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I. INTRODUCTION 
Natural convection heat transfer has always been of particular interest among heat transfer problems. In natural 

convection, fluid motion is caused by natural means such as buoyancy due to density variations resulting from 

temperature distribution. Natural convection plays vital role in heat transfer in case of many applications such as 

electrical components transmission lines, heat exchangers and many other places. Many experiments have been 

performed during the last few decades and interesting results have been presented. Y.A. Cengel [1] discussed 

the natural convection phenomenon in case of vertical cylinder and governing equations to determine heat 

transfer coefficient. L. Davidson et al. [2] developed the natural convection phenomenon in vertical shell and 

tube. Also it was shown that for larger inlet velocity, there is a large value of Nusselt number. L. J. Crane [3] 

studied the natural convection over the vertical cylinder for very large Prandtl number and discussed the effect 

of high Prandtl number on convection through vertical cylinder. The effect of curvature of the cylinder where 

the thickness of the boundary layer is considerable was studied by C. O. Popie [4]. 

 

In all of the above studies, the authors assumed that the viscosities of the fluids are constant throughout the flow 

regime. For example, the viscosity of air is 0.6924 × 10-5 kg/m.s, 1.3289 kg/m.s, 2.286 kg/m.s. and 3.625 

kg/m.s at 100K, 200K, 400K, and 800K temperature respectively Cebeci and Bradshaw [5]. In order to predict 

accurately the flow behavior, it is necessary to take into account the temperature dependence of viscosity Gary 

et al. [6] and Metha and Sood [7] found that the flow characteristics change substantially when the effect of 

temperature dependent viscosity are considered. The mixed convection boundary layer flow on a continuous flat 

plate with variable viscosity have also investigated by Hady et al. [8]. Kafoussias et al. [9] have studied the 

effects of variable viscosity on the free and mixed convection flow from a vertical flat plat in the region near the 

leading edge. Numerically unsteady natural convection of air and the effect of variable viscosity over an 

isothermal vertical cylinder was developed by H. P. Rani et al. [10] and concluded that as the viscosity increases 

the temperature and the skin friction coefficient increases while the velocity near the wall and Nusselt number 

decreases.  

Actually less attention has been paid to the unsteady natural convection flow of a viscous incompressible fluid 

with variable viscosity over a heated vertical cylinder. The aim of the present work is to investigate the viscosity 

effects on the free convective flow of air past a semi-infinite vertical cylinder. The governing equations are 

solved numerically by explicit finite difference method to obtain the transient velocity, temperature, coefficient 

of skin friction, heat transfer rate, isotherms and streamlines for different values of the viscosity parameter. 

Abstract: Aim of this paper is to investigate the boundary layer flow and heat transfer of unsteady 

laminar free convection flow past a semi-infinite isothermal vertical cylinder immersed in air. The fluid 

viscosity is adopted to vary the temperature. An explicit finite difference method has been devoted to solve 

the governing non-dimensional boundary layer equations. A parametric study is accomplished to interpret 

the influence of variable viscosity on the velocity and temperature profiles. The numerical consequences 

disclose that the viscosity has significant influence on transient velocity and temperature profiles, average 

skin friction coefficient and average heat transfer rate. The conclusion indicates that when the viscosity 

parameter increases the temperature and skin friction coefficient increases but the velocity near the wall 

and Nusselt number decreases. We have also shown the effect of viscosity variation parameter on isotherms 

and streamlines.  

Keywords— Heat transfer, Natural convection, Variable viscosity, Vertical cylinder, Explicit finite 

difference method. 
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II. MATHEMATICAL ANALYSIS OF THE PROBLEM 
Consider an unsteady two dimensional natural convection boundary layer flow of a viscous incompressible fluid 

past an isothermal semi-infinite vertical cylinder of radius r0.Here x is taken vertically upward along the axis of 

the cylinder and the origin of axis is taken to be at the leading edge of the cylinder where the boundary layer 

thickness is zero. It is assumed that the radial coordinate is perpendicular to the axis of the cylinder. Also the 

surrounding stationary fluid temperature is measured as the ambient temperature T
*
∞. Initially it is assumed that 

at time t
*
= 0 the cylinder and the fluid are of the same temperature T

*
∞. When t

*
> 0, the temperature of the 

cylinder is raised to T
*

w which is greater than the ambient temperature T
*
∞ and it gives rise to a buoyancy force. 

The effect of the viscous dissipation is measured negligible in the energy equation. 

Under these assumptions the governing boundary layer equations for continuity, momentum and energy for the 

free convection flow over a vertical cylinder with Boussinesq’s approximation are as follows 
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with initial and boundary conditions 
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To get the solution of the equation (1) to (3) along with (4) we want to make them nondimensional. For this 

purpose we use the following nondimensional quantities 
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We assume viscosity of fluid to be proportional to a linear function of temperature as 

   1T T                       (6) 

where µ∞ is the viscosity of ambient fluid, T  is the dimensionless temperature and γ is a scalar 

parameter which shows the influence of temperature on variable viscosity. 
 By introducing the non dimensional variables of (5) and using (6) into the equations (1) to (3) along with (4), 

we get the following nondimensional equations (7) to (9)  
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The corresponding initial and boundary conditions in non-dimensional variables are reduced to the following 

form 

0 : 0, 0, 0t U V T      for all X  and R  

0 : 0, 0, 1t U V T      at 1R   

0, 0, 0U V T              at 0X       

0, 0, 0U V T         as R   

 

 

 

                    (10) 

III. NUMERICAL ANALYSIS OF THE PROBLEMA 
In order solve the non linear governing equations (7)-(9) along with (10) an explicit finite difference method has 

been employed. The finite difference equation corresponding to equations (7)-(9) get the equations (11) to (13) 

respectively 
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To obtain the finite difference equations the region of the flow is divided into the grids or meshes of lines 

parallel to X and R is taken normal to the axis of the cylinder. Here we consider that the height of the cylinder is 

Xmax=100 i.e. X varies from 0 to 100 and regard Rmax=25 as corresponding to R→∞ i.e. R varies from 0 to 25. In 

the above equations (11) to (13) the subscripts i and j designate the grid points along the X and R coordinates, 

respectively, where X = iΔX and R = 1+(j-1)ΔR .There are m=500 and n=500 grid spacing in the X and R 

directions respectively.  

From the initial and boundary conditions given in equation (10), the values of velocity U,V and temperature T 

are known at time τ = 0; then the values of U,V and T at the next time step can be evaluated. Generally, when the 

above variables are known at τ = nΔτ, the values of variables at τ = (n+1)Δτ are calculated as follows. The finite 

difference equations (12) and (13) at every internal nodal point on a particular i -level constitute a tri-diagonal 

system of equations. Such a system of equation is solved by Thomas algorithm. At first the temperature T is 

calculated from equation (12) at every j nodal point on a particular i -level at the (n+1) time step. By making the 

use of these known values of T, the velocity U at the (n+1) time step is calculated from equation (11) in a similar 

way. Thus the values of T and U are known at a particular i -level. Then the velocity V is calculated from 

equation (10) explicitly. This process is repeated for the consecutive i -levels. Thus the values of U, V and T are 

known at all grid points in the rectangular region at the (n+1)th time step. This iterative procedure is repeated 

for many time steps until the steady state solution is reached.  
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IV. RESSULTS AND DISCUSSION 
We have obtained numerical solutions by solving the finite difference equations using explicit finite difference 

method. The velocity, temperature, coefficient of skin friction, rate of heat transfer in terms of Nusselt number, 

isotherms and streamlines have been carried out by assigning some arbitrarily chosen specific values to the 

physical parameters involved in the problem. Also for each feasible difference of wall and ambient temperature 

it can be said that the variation of the Prandtl number with temperature is not noticeable. Therefore, the non 

dimensionalized system of equations (7)-(9) along with (10) have been solved with a fixed value of Prandtl 

number. In the present numerical solution four values of γ are chosen 0.2, 0.4, 0.6, and 0.8 with a fixed value of 

Prandtl number Pr = 0.70. In case of isotherms and streamlines we have used another four values of γ 0.25, 0.50, 

0.75 and 1.00.  The figures computed from the numerical method of the problem have been displayed in Figs. 

(1-9).  

The present velocity and temperature profiles are compared with the results of H. P. Rani et al. [10] for the 

steady state, isothermal and constant thermal conductivity with Pr = 0.7. The comparison results, which are 

shown in Fig. 1and Fig. 2 are found to be in good agreement. 

  
Fig.1. Comparison of the velocity and 

temperature profiles for Pr = 0.7 and γ = 0.2 

Fig.2. Comparison of the velocity and temperature 

profiles for Pr = 0.7 and γ = - 0.2. 

 

 VELOCITY 
Fig. 3 and Fig. 4 illustrate the graphical representation of the simulated transient velocity profiles at the temporal 

maximum and steady state against the radial coordinate R at X=1.0 for different γ. It is noticed that the velocity 

profiles start with the value zero at the wall, reached their maximum close to the hot wall and then 

monotonically decrease to zero. It is clear that the time to reach the temporal maximum of velocity increases 

with the increasing viscosity variation parameter γ, while the time to reach the steady- State are almost the same 

for different γ. It is noticed that the magnitude of the peak velocity becomes smaller as viscosity variation 

parameter becomes larger. It is observed that if we increase values of the viscosity variation parameter then it 

increases the velocity of the flow away from the wall, because the viscosity is increasing with the increase of the 

viscosity variation parameter. The location of the maximum velocity gets far away from the cylinder for higher 

values of γ. This qualitative arises because, for the case of fluid with larger viscosity (say γ = 0.8), the fluid is 

not capable to move easily in a region very near the heated surface, while the fluid with smaller viscosity (say γ 

= 0.2) can move more freely close to the wall. From the above discussion, it is clear that neglecting the variation 

of the fluid viscosity, which depends on the temperature, introduces a substantial error.         

R
0 5 10 15 20 25

0

1

2

3

4

5 Temperature (T)

Velocity (U)

R
0 5 10 15 20 25

0

1

2

3

4

5
Temperature (T)

Velocity (V)



  International 

     Journal 

Of Advanced Research in Engineering & Management (IJAREM) 

 

 
| Vol. 01 | Issue 03 | June 2015 | 94 | 

  
Fig.3.Variation of the steady state velocity profiles 

with respect to positive values of γ.  

Fig.4.Variation of the steady state velocity profiles 

with respect to negative values of γ.  

  

TEMPERATURE 
Fig. 5 and Fig. 6 show the graphical representation of the simulated steady state temperature profiles  against the 

radial coordinate R at X=1.0 for different γ. It is observed that the temperature profiles start with the hot wall 

temperature (T=1) and then monotonically decrease to zero as the radial coordinate increases. Also it is noticed 

that temperature profiles increase with the increase of the viscosity variation parameter. It is connected to the 

matter that with the increase in the viscosity variation parameter the viscosity of the fluid is increases, which 

permits higher velocity away from the hot wall. 

The temperature profiles increase with increasing γ, which is related with the fact that the increase in γ causes 

the decrease in the peak velocity as shown in Fig. 3.and Fig. 4 However, two opposite effects of the increase in γ 
on the fluid particle can be considered.  

The first effect decreases the velocity of the fluid due to increase in viscosity where the second effects increase 

the velocity of the fluid particle due to increase in temperature as shown in Fig. 5 and Fig. 6. Close to the 

cylinder wall the temperature is relatively high, as a results, the first effect will be dominant and the velocity 

decreases as γ increases (Fig. 3 and Fig. 4). On the other hand, away from the cylinder wall, where the 

temperature T is relatively low, the second effect will be dominant and the velocity increases as γ increases (Fig. 

3 and Fig. 4). 

 

 
Fig.5.Variation of the steady state temperatures 

profiles with respect to positive values of γ.  
Fig.6.Variation of the steady state temperatures 

profiles with respect to negative values of γ.  
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AVERAGE SKIN FRICTION COEFFICIENT AND HEAT TRANSFER RATE 

We have calculated average skin friction coefficient as 

 
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The average heat transfer rate (Nusselt number) is expressed as 
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Fig. 7. Variation of the average skin friction and Nusselt number with respect to γ 

 

In Fig.7, the simulated average non dimensional skin friction coefficient and heat transfer rate for different γ 

have been plotted against the time. It is noticed from the figure that for all values of γ the average skin friction 

coefficient increases with time, reaches the temporal maximum value and after little decreasing, becomes 

asymptotically steady. For increasing value of γ the average skin friction increases in association with the fact 

that the increase in value of γ yields the increase in the viscosity near the wall. The Nusselt number for different 

values of γ decrease with time at the beginning, reach the temporal minimum and then after slide increasing, 

reach the steady state. For different values of γ there is slide difference in the average Nusselt number in the 

very early part of the transient period. This fact explains that initially the heat transfer is performed mostly by 

the conduction with the large temperature difference between the wall and the fluid. With the increase of time, 

the free convection effect becomes more pronounced and as a result, the local Nusselt number generally 

decreases, decreasing the heat transfer rates. 

 

 

 

 

 

 

 

 

 

 

 

t
5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

  

  

  

uN  

fC  



  International 

     Journal 

Of Advanced Research in Engineering & Management (IJAREM) 

 

 
| Vol. 01 | Issue 03 | June 2015 | 96 | 

 

STREAMLINES AND ISOTHERMS 

  
(a) (b) 

 

 

(c)  

Fig. 8. (a), (b), (c) represent the streamlines with respect to γ=0.00 , γ=0.25 and γ=0.50 respectively. 
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(a) (b) 

 

 

(c)  

Fig. 9. (a), (b), (c) represent the isotherm lines with respect to γ=0.00 , γ=0.25 and γ=0.50 respectively.

  

 
Figure 8 is showing the streamline for different values of the viscosity variation parameter γ. It is observed from 

the figure that without the effect of viscosity variation parameter (i.e. γ = 0.0), the values of stream are lower 

when the boundary layer thickness is highest shown in figure 8(a), but with the increase of viscosity variation 

parameter γ (when γ = 0.25 and γ = 0.50) increases the values of stream shown in figure 8(b) and 8(c), also the 

momentum and boundary layer become thinner. Figure 8 illustrates the effect of the viscosity variation 

parameter γ on the development of isotherms which is plotted for γ (= 0.00, 0.25, and 0.50). From the figure it is 

clearly noticed that the viscosity of the fluid increased at the vicinity of the surface which indicates that the 

viscosity of the fluid is strongly dependent on temperature. The temperature distribution reduces slightly for 

large values of γ. Finally it can be concluded saying that the momentum and thermal boundary layer become 

thin for high viscose fluid. 

  

 

 

 

 

 

 

 

 

X

Y

0 2 4 6 8
0

1

2

3

4

5

6

7

Level Temp

15 0.9375

14 0.875

13 0.8125

12 0.75

11 0.6875

10 0.625

9 0.5625

8 0.5

7 0.4375

6 0.375

5 0.3125

4 0.25

3 0.1875

2 0.125

1 0.0625

X

Y

0 2 4 6 8
0

1

2

3

4

5

6

7

Level Temp

15 0.9375

14 0.875

13 0.8125

12 0.75

11 0.6875

10 0.625

9 0.5625

8 0.5

7 0.4375

6 0.375

5 0.3125

4 0.25

3 0.1875

2 0.125

1 0.0625

X

Y

0 2 4 6 8
0

1

2

3

4

5

6

7

Level Temp

15 0.9375

14 0.875

13 0.8125

12 0.75

11 0.6875

10 0.625

9 0.5625

8 0.5

7 0.4375

6 0.375

5 0.3125

4 0.25

3 0.1875

2 0.125

1 0.0625



  International 

     Journal 

Of Advanced Research in Engineering & Management (IJAREM) 

 

 
| Vol. 01 | Issue 03 | June 2015 | 98 | 

V. CONCLUTION 
 Numerical study for the unsteady natural convection of air with variable viscosity along a semi-infinite vertical 

cylinder has been investigated. The viscosity of the fluid is assumed to be temperature dependent, while the 

Prandtl number is kept constant. An explicit method is used to solve the dimensionless governing equations in a 

meridian plane. The computations are carried out to study the influence of the viscosity variation parameter γ on 

the transient dimensionless velocity, temperature, skin friction coefficient and heat transfer rate, streamlines and 

isotherms. 

Generally less attention has been paid to the unsteady natural convection flow of a viscous incompressible fluid 

with variable viscosity over a heated vertical cylinder. The aim of the present work is to investigate the viscosity 

effects on the free convective flow of air past a semi-infinite vertical cylinder. From the present numerical 

analysis the following observations are established. 

Velocity profiles near the wall decrease with the increase of γ, while the temperature profiles increase. The time 

which is taken to reach the temporal maximum of the velocity increases with the increase of γ. Initially, the 

unsteady behavior of the temperature with the variable viscosity coincides with that of fluid with constant 

properties. Then the temperature with the variable viscosity deviates from that with constant properties and 

reached the steady state asymptotically. When the viscosity variation parameter is larger, lower velocity near the 

isothermal cylinder wall and higher velocity in a region away from the wall are observed, which gives the lower 

average Nusselt number. The increase in the viscosity variation parameter leads to the decrease in the average 

heat transfer rate and to the increase in the average skin friction. With the increase of viscosity variation 

parameter γ increases the values of stream and the temperature distribution reduces slightly for large values of γ. 
As a result the momentum and thermal boundary layer become thin for high viscose fluid.   

The results of our study are compared with the results of H. P. Rani et al. [10] for the steady state, isothermal 

and constant viscosity with Pr = 0.7. The comparison results are found to be in good agreement. Additionally we 

have also showed the effect of viscosity variation parameter γ on streamlines and isotherms. 
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