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Harmonic Analysis Associated with the Generalized
Dunkl-Bessel-Laplace Operator
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ABSTRACT : In this paper we consider a generalized Dunkl-Bessel-Laplace operator Ay 4 Which
generalizes the Dunkl-Bessel-Laplace operator A, , on R?x]0,00[ , we define the generalized

Dunkl-Bessel intertwining operator R, , =~ and its dual tRk'/jyn . We exploit these operators to develop a new

harmonic analysis corresponding to A, , .

1 Introduction
In this paper we consider the generalized Dunkl-Bessel-Laplace operator defined by

Ak,ﬂ,ﬂ = Ak,x' + Lﬂ 1 X' € Rd’ Xd+l > O,

MXg 41

where A, is the Dunkl-Laplacian operator on R (see[2]), Lﬂ'n is the generalized Bessel operator on
]0,+od[ given by

d> 2B+1 d  4n(a+n -1
Lﬁ’n:dz + s g — (2 ),ﬁ>—,
Xd +1 Xd +1 Xd +1 Xd +1 2
K is a multiplicity function (see [3]) and n=0,1,.... For N=0, we regain the Dunkl-Bessel-Laplace
operator.

— ’ d
Ay =Ap+ L,,J,’XM, X'eR", X4, >0.

Through this paper, we provide a new harmonic analysis on R¢ x]0, 0] corresponding to the generalized
Dunkl-Bessel-Laplace operator A, ;..

The outline of the content of this paper is as follows.
Section 2 is dedicated to some properties and results concerning the Dunkl-Laplace-Bessel operator .

In section 3, we construct the generalized Dunkl-Bessel intertwining operator Rkﬁ'n and its dual
tRkﬁyn, next we exploit these operators to build a new harmonic analysis on R¢ x]0,o0[ corresponding to

operator A, ;..

2 Preliminaries
Throughout this paper, we denote by

aﬂ :M1 where ﬁ>__1

VAT (p+)
* X= (Xl""’ Xd+1) = (Xl' Xd+l) € Rd X]0,00[.
¢ ﬂ':(ﬂi""'/’i‘dﬂ) :(j’l'ﬁ’dﬂ)ecdﬂ'

. C(R‘M) the space of continuous functions on Rd+l, even with respect to the last variable.

| Vol. 01 | Issue 04 | July 2015 | 83 |

M

@)

®)



International

Journal
Of Advanced Research in Engineering & Management (IJAREM)

« ER™) (resp. D(R"™)) the space of C* functionson R®*, even with respect to the last variable
(resp. with compact support).

+ S (Rd+1) the Schwartz space of rapidly decreasing functions on R which are even with respect to the
last variable.

- R therootsystemin R*\{0}, R, isa fixed positive subsystem and k € R —]0,o0[ a multiplicity
function.

« T; the Dunkl operator defined for j=1,..,d, on RY and f e E(Rd) by

ij(x) :M+ Zk(a)% (f(x)—f(o,(x)

dx; =y <a,Xx>

where <,> isthe usual scalar product, o, is the orthogonal reflection in the hyperplane orthogonal to & and

the multiplicity function K is invariant by the finite reflection group W generated by the reflection o,
(¢ eR).
« A, the Dunkl-Laplace operator defined by

Aﬁoozfjfun.

* W, the weight function defined by
W) = [T k< X >/, x eR".

aeR+

In this section we recall some facts about harmonic analysis related to the Dunkl-Bessel-Laplace operator A, 5
We cite here, as briefly as possible, only some properties. For more details we refer to [2, 3, 4].

Definition 1 For all X € R?x]0,00[ we define the measure &” on R“x]0,00[ by
1

ﬁ_7
K, o u2B(y2 d+l
d&cr (y) = aﬂxd+lﬁ(xd+l ~ Yo 2:l-]o,><d+1

[(Ydﬂ)dﬂx- (y')dydﬂ’
where iy is a probability measure on R, with support in the closed ball B(O,”X”) of center O and radius

||X|| 1]0'Xd+1[ is the characteristic function of the interval ]0, X,.,[ -

Definition 2 The Dunkl-Bessel intertwining operator is the operator Rk'ﬂ defined on C(R‘M) by

1
. _ Xq 4 p— .
Re s f (X, Xg) = ayx 2 Od Y(x2, —t7)" 2V, f (X, t)dt. )

Remark 1 Rk,ﬂ can also be written in the form

vxeR! <0, R, F ()= [, (A ().

Proposition 1 Rkv,), is a topological isomorphism from E(Rd+1) onto itself satisfying the following
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transmutation relation

Ak,ﬂ (Rk,ﬂ f)= Rk,ﬂ Ay T) Vi e E(Rdﬂ)’

d+1 d2

where Ay, = Zj—lF is the Laplacian on R®*".
—ax

i
Definition 3 The dual of the Dunkl-Bessel intertwining operator Rk’ﬁ is the operator tRkﬁ defined on

DR™™) by: Vy=(Y,Y4,1) €R" x[0; [,

1
. 0 p— .
tRk,ﬁ( f)(y, yd+l) = aﬂ-[yd 1(32 _ y§+1) 2 th f(y,s)sds, (5)
where th is the dual Dunkl intertwining operator defined by
vy eR?, Vi(y) = [ 4 F(0dv, (%), ®)

and vy is a positive measure on R? with support in the set {X el , ||X|| > ||y||}

Proposition 2 tRkﬁ is a topological isomorphism from S(R®™) onto itself satisfying the following

transmutation relation
tRk,ﬂ(Ak,ﬁ f)= Ad+1(tRk,/3 f),vf e E(Rd+1),

Forall yeR", we define the measure p:f‘ﬁ on R?x[0,o0[, by
1
B .
dp;ﬂ (X) = aﬁ (X§+l - y§+l) 2 Xd+ll]yd+l,oo[(xd+l)d Vy‘ (X )dXd+l' (7)

From (5) the operator tRk’ﬂ can also be written in the form

Res (DM =] F()dpy” (x). ®)
We consider the function A, ,,givenfor 2 =(1",44,,) € C’xC by

Ay (% A) = KX, =12 5 (Xg.044.0): ©)

where J,(Xy,344,,) is the normalized Bessel function defined by

d x[0,00[

1
. 1 B
Jp(Xqate.) = aﬁjo(l_tz) 2 COS(Xg,14q.1t)dt
and K(X',—i4") is the Dunkl Kernel defined by
K(x,=i2) = [y du. (y).
The Dunkl-Bessel-Laplace operator Akﬁ’n and the function Ak’ﬁ are related by the following relation
2
Ay (A 5) (X A) = —||A|| Ay 5 (% 4). (10)

The Dunkl-Bessel translation operators T, are defined by

Tx f (y) = Tx’ ®Tx§+l f (y,’ yd+l)1 y' € Rd1 yd+1 > O (11)

where 7, is the Dunkl translation operator, and Txﬁ . is the generalized translation operator associated with
+

__________________________________________________________________________________________________________________________________|
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the Bessel operator L ,. We denote by Lkp’ﬁ, (R“I xR,), 1< p<+oo the space of measurable functions on
RY xR, such that

[0 =i | TP Ay 00K ) <5, i 15 p<ien )

|f ||kﬂw =ess sup | f(X)|<+oo, if p=oo (13)
- xe1 90,40
where

A, 5 (dx = w, (X)X57 X dXy ;. X = (X, Xg,,) R xR, (14)

Proposition 3 Let f bein L}(’ﬁ(Rd xR,). Then
Jo.m, Ry = [y FOIA, (0

Theorem 1 Let f € lelﬂ(F\’d xR,) and g in C(R*"), we have the formula
feoe Res(DNIMIY =[5 FOIRC (@A, () (15)

Definition 4 The Dunkl-Bessel transform is given for f in D(Rdﬂ) by
VAeRYxR,, F,(f)(A) = de& F (XA 5 (% DA, 5(X)dX. (16)

Remark 2 The relation (16) can also be written in the following form:
VA= (X, A4) eR*xR,, R ,(f)(A) =F oF,(f)(4), 17)

where F, is the Dunkl transform of a function ¥ in R given by
VA eRY, F (w)(A) = dew(x') K (X' ,=iA")w, (X')dx’ (18)

and F, is the Fourier-Bessel transform defined for h € D(R) by
Vi €R., Fy(Ae) = [ (1), (A, 007 dt. (19)

Proposition 4
«For f e L1|<’ﬁ.(Rd xR.,), we have

[NWICON W I B e (20)
«For f eD(R®™"), we have
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Fk,ﬂ(f) =F o tRk,ﬂ(f)i
where F, is the transform defined by VA =(1',4,,,) €eR® xR,
Fo( ) A0) = g F ¢ %0,0)e 7 €0S(X, 1Ay )X,

«For f € D(R*™), we have
VAeR xR, F (A, ,F)A) = A" R, (F)(A).

Theorem 2 The inverse transform Fl; ; is given by
VAeR xR, Fo,(F)(y)=m, R ,()(-y)
with
m , = S
YA (p+1)?

and C, isgiven by Mehta integral

1_ :
o = heep X wx
and

y = z k().

aeR+

Theorem 3 Forall f e Li’ﬂ (RYxR,) such that F,(f)e Liﬁ (R* xR, ), we have the inverse formula
Fy)=me[a R (DAY, DA, ,(A)dA, ae

Theorem 4 Plancherel formula: for all f in D(R®™), we have
Jon 1TOOF A 00B=m,, [, 1R, (DA A, ()02

Definition 5 The translation operators T,, X € RY x R, associated with the Dunkl-Bessel operator are

defined for f € Li’/j,(l?d xR,) and 1R xR, by

Fep (T EA) = Ay s (6 AR 4 (T)(A).
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Proposition 5
«Forall X,y e =& xR, and A€ C%**, we have

TA (Y A) = A s (DA 4 (Y, A). (30)

«For f e E(R*™),and g e D(R*™), we have
Lo TEOIOA () = [, TOIT.G0A, (). a

Definition 6 The convolution product associated with the Dunkl-Bessel operator of two functions f and g in
D(R™) isdefined on R* xR, by

o, 000=[,  FOTIO ALY, (32)
with Y~ =(=Y", Y4.1)-

Proposition 6 Let f e Lﬁyﬁ (R°?) and g e Li'ﬂ (R®™), we have
Fes(f x5 9)=F ;(F)FR ;(9). (33)

3 Harmonic analysis associated with A
Throughout this section we denoted by
- R™ =R%x]0, o[ .
« M, the map defined by M, f (X, Xy,;) = X" f (X, X4.,,)-

. LE’ﬂ’n(R?fl) the class of measurable functions f on R"*" for which

= M ], <

k,p+2n,p

k,5,n

” f ”k,ﬂ,n,p

- E,(R™) (resp. D,(R*™) and S,(R®™)) stand for the subspace of E(R’*") (resp. D(R"*)
and S(R®™)) consisting of functions f such that
k
f(x,0)= (:—kfj(x',O) =0,vk e{1,..2n-1}.
d+1

We consider the function A, , ., givenfor 1=(1,4,,,) € C’xC by
A pn (x,4) = XgilAk,mzn (X, 4)= M, Ay g2 (X, 4). (34)

Lemma 1
« The map M, is an isomorphism

-from E(R‘") onto E,(R").
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-from S(R*"") onto S, (R®™).

«Forall f € E(R) we have
Lﬂ,nOMn(f):MnoLﬂ+2n(f)1 (35)
where Lﬁ'n is the generalized Bessel operator given by (2).

«Forall f e E(R"™)
Ak,ﬂ,n oM, (f )(XI! Xd+1) =M, Ak,ﬂ+2n (f )(XI, Xd+1)' (36)

Proof. For assertion (i) and (ii) (See [1]). For assertion (iii), using (1) and (35), we have for any
f e E(R"™)

Ay g oM, f(x, Xg1) = Ay oM f(X Xd+1)+L oMnf(X"Xdﬂ)

= Ak X' Xd+1f (X Xd+l) + £.n, X4 Xd+lf (X Xd+1)
= Xd+l k,x' f (X Xd+l) + Xd+lL,b’+2n X411 f (X 'Xd+l)
= Mn ° Ak,ﬂ+2n(f)(x 7Xd+l)!

where X' €R? and X,,, >0.

Proposition 7 The function A, ,, satisfies the differential equation
2
Ak,ﬁ,n(Ak,ﬁ,n)(X!i):_” 2 Ay pn (X, A).

Proof. From (34) we have

Ak,ﬁ,n = Mn ° Ak,/)’+2n’

using (10) and (36) we obtain
Ay pn (Ak,ﬁ,n) = Ay pn (MnAk,ﬂ+2n)

= MnAk,ﬁ+2n (Ak,p’+2n)
=—|| 2 ['M,A
== 2 A

k,B+2n
k,B,n (X’ ﬂ’)
Definition 7 The generalized Dunkl-Bessel intertwining operator is the operator Rk]ﬁ’n defined on C(R‘M)

by

1
X p+2n—= .
Ry s f(x)= aﬁ+2nxcﬁ§ﬂ+n) Od+1(X§+1 —t?) ’ 2V, f(x,t)dt.

Remark 3
* From (4) it is easily checked that

Risn =M, oRy suan- (37)

k,B.n

* From Definition 1, Remark 1 and (37) Rkﬁn can also be written in the form
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VXERM R, 40 T (0 = |40 f (1)AE"(y).

Proposition 8 Rk’ﬁ’n is a topological isomorphism from E(R‘M) onto En(Rd”) satisfying the following
transmutation relation
f)=R

AcsnR (Ay,, T), VI eE(R™™),

k,p.n k,p.n

2
g d® .
where Ay, = Zj:lw is the Laplacian on R®*".

i
Proof. The result follows directly from (37), Proposition 1 and Lemma 1.((i) and (iii)).

Definition 8 The dual of the generalized Dunkl-Bessel intertwining operator Rk’ﬁ,n is the operator defined on
D, (R™) by: Wy =(Y,Ya.) eR*x]0;0c],

1
' 00 p+2n—= . “on
tRk,ﬁ,n(f)(y ' yd+1) = aﬁ+2njyd 1(82 - yjﬂ) ? th f (y 15)31 2 dS- (38)

Remark 4
* Due to (5) and (38)

t —t -1
Rk,ﬁ,n - Rk,ﬁ+2n OIvln ' (39)

* By (7), (8) and (39) we can deduce that
tRk,ﬁ,n ( f )(y) = .[Rd{LX(;ijrl_] f (X)dp;,ﬂJan (X)

where X = (X, X,,,) € R*x]0, od[.

Proposition 9 tRkﬁ is a topological isomorphism from Sn(Rd”) onto S(Rd+l) satisfying the following
transmutation relation

Ry (A5 1) = 201 (Ry 4 F), VF €S (R™).
Proof. The result follows directly from (39), Proposition 2 and Lemma 1.((i) and (iii)).

Proposition 10 Let f bein leﬁvn(Rf’fl). Then

»[Rd*'l tF\)kﬂn(f)(y)dy = IRd+1f (X)Ak,ﬂ+n (X)dX.

Proof. An easily combination of (14), (39) and Proposition 1 shows that
s Repn (Y = g1 Ry (1))l

= [ MDA, 20 (¥) X

- _[Rd+1xcﬁ? FOOAL .20 (X)X
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= Lm (A g0 (X)dX.

Theorem5 Let f € Liﬁ,n(Rf“) and g € C(R®™), we have the following formula
feast Rnn(DMIIOY = [ 4.0F (R0 @A . (0

Proof. From (15) and (39) we obtain
Liu Ry 5. (F)(¥)g(y)dy = Liﬂ Ry paan oM (F)(y)9(y)dy

- J.Rd*'lM;l( f )(X)Rk,ﬂ+2n (g)(X)AkﬁQn (X)dX
- J‘Rdﬂxgﬂ] f (X)Rk,ﬂ+2n (g)(X)Ak'ﬁJan (X)dX
= J-Rd+1f (X)Rk,ﬂ,n (g)(X)Akyﬂ+n (X)dX.

Definition 9 The generalized Dunkl-Bessel transform is given for f in D, (R®™") by

VAeRxR,, F ;. ()(2) = deR FOOAL 50 (X AA (X)X,

Remark 5
* Due to (14), (16) and (34) we have
— -1
I:k,ﬂ,n - Fk,ﬁ+2n o'\/ln '
* By (17) and (41) we can deduce that
— -1
I:k,ﬁ‘,n - I:k (Fﬁ+2n ° Mn )

Proposition 11

«For f ELl

K fin (R*xR,), we have

” Fk,ﬂ,n(f) ”k,/},ooS” f ”k,ﬂ,n,l'

-For f eD,(R*"), we have

Fepn(f)=Fo Ry 40 (1),
where F, is the transform defined by VA = (1, 4,,,) eR* xR,

F(T A ) = [ 000957 008K, Ay )XK, o

«For f eD(R®™"), we have
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VAER'XR,, Fpn(A 5, XD == 2 [ F ().

Proof. From (20) and (41) we have
| Fepnl®) kg =1 Fopean o MI(E) .,
<[ma1]

k,B+2n1

<[l g

which proves assertion (i).
By (21), (39) and (41) we obtain

Fk,ﬂ,n (f)= Fk,p’+2n ° Mgl( f)
=k tRk,ﬁ+2n oMEl(f)
=k tRk,ﬁ,n(f):

which proves assertion (ii).
Due to (23), (36) and (41) we have

Fesn @i F)A) =R pian oM (A 50 T)(A)
= Fk,ﬁ+2n ° M;l(Ak,ﬁ,n f)(1)

=Fpian (A po2aMy T)(4)

=" Fipezn oM (D)

=~ B s (F)(A).

Theorem 6 The inverse of the Dunkl-Bessel transform F, ;. is given by
d - —
vy €RIXR,, By (1)) =M ,00F 5 (F)Y). (42)

Proof. By (24) and (41) we have
Fesn (1)) =R g0 oMy (F)(Y)
Fepan (1)) =M, oF 0 (F)(Y)
=My 4.20M, o R pon (F)(=Y)
= mk,ﬂ+2an,ﬁ,n(f)(_y)-

Theorem 7 Forall f e} RY1Y such that F felt RY* , we have the inverse formula
k,B.n + k,p.n k,B.n +

FY) =My gian [0 Fopn (DDA 0 (Y. DA 420 (DA, ae. (43)

Proof. An easily combination of (14), (27), (34) and (41) shows that
mk,ﬁ+2n _[Rd-HLFk,ﬁ,n ( f )(/I)Ak,ﬂ,n (_y! X’)Ak,ﬁ+2n (ﬂ’)dﬁ“
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= mk ﬁ+2nJ. d+1Fk p+2n © M (f)(ﬂ’) yd+1 k,B+2n (_yl j“)'A‘k,ﬂJan (A)d/l
= YauMy ()
=f(y).

Theorem 8 Plancherel formula: for all f in D, (R*™"), we have

gl FOOP A= My 0 ] g [Fepn (DA A 20 (A4
RE Ry

Proof. By (41) we have
[P DA F A panDAA= [ 41 IR o oM F A, .20 (1),
using (28) we get

mk,ﬁ+2and+l | I:k,ﬂ+2n ° Mgl( f )(/1) |2 Ak,ﬁ+2n (l)dﬂ’ = J.Rd+1 | Mglf (X) |2 Ak,ﬁ’+2n (X)dX
= LM | () A s (X)dx.

Definition 10 The generalized Dunkl-Bessel translation operators T, associated with A, ,  are defined by
T = XM, o T, oM. (44)

n X

Remark 6 By (11) and (44) it is easily checked that
TEY) =7, OT " (Y, Yan)

where sz ’"1 are the generalized Bessel translation operators defined by
+:

T/" =xI"M, o T/"+2n M.

Xd+1

Proposition 12 Let f e L , (R!™), xeR™ and A eR™ then
Fepn (T F)A) = Ay 40 (X AF 50 (F)(A).
Proof. Using (29), (34) (41) and (44) we get
Fe B (T,F)A) =F p+2n © M, (Xd+l noTygo Mgl( f))(4)

=F pan oMy (XM, o T, oM (T))(A)

= Xd+le,ﬂ+2n (T oM (F))(A)

= Xg?—lAk,,B+2n (X, Z)Fk,ﬁ‘+2n °© Mgl( f)(4)

= N pn AR 5 (F)(A).

Proposition 13
«Forall X,y eR?™" and 1eC*", we have
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( )

T></\k,ﬁ,n (y! /1) = Ak,/i,n (X! ﬂ)Ak,ﬂ,n (y! ﬂ')

«For f €eE(R*™),and g e D(R*™), we have
Jaa- T A DIWAL (MY = [0 f ITIWA ().

Proof. An easily combination of (30), (34) and (44) shows that
T A B 2 (Y, A) = Xd+l noTye M;lAk,ﬁ,n(y1 A)

= Xd+an oTxAk,ﬂ+2n(y1ﬂ’)
= Xg-r:lyg-r:lTxAk,ﬂ+2n(y1ﬂ')
= inlyc?LAk,ﬂJan (X, A)Ak,ﬂ+2n (y1 ﬂ“)

= Ak,ﬁ,n (X1 ﬂ')Ak,ﬁ,n (y1 ﬂ')
which proves assertion (i).
By (14), (31) and (44) we obtain

faa T FIWNA (Y = [ XM, T oM F(1)GA ()Y
= [T oM (MG (YA g an (Y)Y

= [ M (XET, MG (DA 0 (V)Y

= [T ODXEM, o T, Mg (VA (y)dy
= jRgﬂf (NT.AMNA, ,(y)dy.

Definition 11 The convolution product associated with the generalized Dunkl-Bessel operator of two functions
f and g in D, (R"™") isdefinedon R%" by

f o pn 000 = [ f DT IOA ()Y, 45)
with Y~ =(=Y', ¥4.1) -
Proposition 14 Let f and g in D,(R""), we have
F e O MM ) 5 00 (M0)] (46)

Proof. From (32), (44) and (45) we obtain
0 900 = [oafITOOA ()

= [T XM, o, M9 (y A, (y)dly
= Xd+1_[ d+lM ()T oMlg(y)A, pean (Y)Y
= Mn [(Mn f)*k,ﬁ+2n (Mn g)]
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Proposition 15 Let f € Liﬁ’n(Ri*l) and geli,, (R, then

Fk,ﬂ,n(f e pn g)= Fk,ﬁ,n(f)Fk,ﬂ,n(g)' (47)

Proof. By (46) we have

f >l<k,ﬁ,n g= Mn [(M;l f ) *k,ﬁ+2n (M;lg)]
using (33) and (41) we get

Fepn(F 5em 9) =Fsn oM (M) %, 00 (M)
= Fpuzn O M oM (M) 5, 0 (M)

= FpanlM )%, .0 (M10)]

=F pion (M;l f )Fk,ﬂ+2n (Mglg)

=Fepn(F)F s (0).
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