Harmonic Analysis Associated with the Generalized Dunkl-Bessel-Laplace Operator

*A. Abouelaz, *A. Achak, *R. Daher, *El. Loualid

ABSTRACT: In this paper we consider a generalized Dunkl-Bessel-Laplace operator $\Delta_{k,\beta,n}$ which generalizes the Dunkl-Bessel-Laplace operator $\Delta_{k,\beta}$ on $\mathbb{R}^d \times]0,\infty[$, we define the generalized Dunkl-Bessel intertwining operator $\mathbb{R}_{k,\beta,n}$ and its dual ${}^t\mathbb{R}_{k,\beta,n}$. We exploit these operators to develop a new harmonic analysis corresponding to $\Delta_{k,\beta,n}$.

1 Introduction

In this paper we consider the generalized Dunkl-Bessel-Laplace operator defined by

$$\Delta_{k,\beta,n} = \Delta_{k,x'} + L_{\beta,n,x_{d+1}}, \ x' \in \mathbb{R}^d, x_{d+1} > 0,$$
 (1)

where Δ_k is the Dunkl-Laplacian operator on R^d (see[2]), $L_{\beta,n}$ is the generalized Bessel operator on $]0,+\infty[$ given by

$$L_{\beta,n} = \frac{d^2}{dx_{d+1}^2} + \frac{2\beta + 1}{x_{d+1}} \frac{d}{dx_{d+1}} - \frac{4n(\alpha + n)}{x_{d+1}^2}, \ \beta > \frac{-1}{2},$$
 (2)

k is a multiplicity function (see [3]) and n = 0,1,... For n = 0, we regain the Dunkl-Bessel-Laplace operator.

$$\Delta_{k,\beta} = \Delta_{k,x'} + L_{\beta,x_{d+1}}, \ x' \in \mathbb{R}^d, x_{d+1} > 0.$$
 (3)

Through this paper, we provide a new harmonic analysis on $\mathbb{R}^d \times]0,\infty[$ corresponding to the generalized Dunkl-Bessel-Laplace operator $\Delta_{k,\beta,n}$.

The outline of the content of this paper is as follows.

Section 2 is dedicated to some properties and results concerning the Dunkl-Laplace-Bessel operator .

In section 3, we construct the generalized Dunkl-Bessel intertwining operator $R_{k,\beta,n}$ and its dual

 ${}^t\mathsf{R}_{k,\beta,n}$, next we exploit these operators to build a new harmonic analysis on $\mathsf{R}^d \times]0,\infty[$ corresponding to operator $\Delta_{k,\beta,n}$.

2 Preliminaries

Throughout this paper, we denote by

•
$$a_{\beta} = \frac{2\Gamma(\beta+1)}{\sqrt{\pi}\Gamma(\beta+\frac{1}{2})}$$
, where $\beta > \frac{-1}{2}$.

•
$$x = (x_1, ..., x_{d+1}) = (x', x_{d+1}) \in \mathbb{R}^d \times]0, \infty[.$$

•
$$\lambda = (\lambda_1, ..., \lambda_{d+1}) = (\lambda', \lambda_{d+1}) \in \mathbb{C}^{d+1}$$
.

• $C(\mathbb{R}^{d+1})$ the space of continuous functions on \mathbb{R}^{d+1} , even with respect to the last variable.

- $E(R^{d+1})$ (resp. $D(R^{d+1})$) the space of C^{∞} functions on R^{d+1} , even with respect to the last variable (resp. with compact support).
- $S(R^{d+1})$ the Schwartz space of rapidly decreasing functions on R^{d+1} which are even with respect to the last variable.
- R the root system in $\mathbb{R}^d \setminus \{0\}$, \mathbb{R}_+ is a fixed positive subsystem and $k \in \mathbb{R} \to]0,\infty[$ a multiplicity function.
 - T_i the Dunkl operator defined for j = 1,...,d, on \mathbb{R}^d and $f \in E(\mathbb{R}^d)$ by

$$T_{j}f(x) = \frac{df(x)}{dx_{j}} + \sum_{\alpha \in \mathbb{R}_{+}} k(\alpha)\alpha_{j} \frac{(f(x) - f(\sigma_{\alpha}(x)))}{\langle \alpha, x \rangle}$$

where <,> is the usual scalar product, σ_{α} is the orthogonal reflection in the hyperplane orthogonal to α and the multiplicity function k is invariant by the finite reflection group W generated by the reflection σ_{α} ($\alpha \in \mathbb{R}$).

• Δ_{ν} the Dunkl-Laplace operator defined by

$$\Delta_k f(x) = \sum_{j=0}^d T_j^2 f(x).$$

• w_k the weight function defined by

$$w_k(x') = \prod_{\alpha \in \mathsf{R}_+} |\langle \alpha, x' \rangle|^{2k(\alpha)}, x' \in \mathsf{R}^d.$$

In this section we recall some facts about harmonic analysis related to the Dunkl-Bessel-Laplace operator $\Delta_{k,\beta}$. We cite here, as briefly as possible, only some properties. For more details we refer to [2, 3, 4].

Definition 1 For all $x \in \mathbb{R}^d \times]0, \infty[$ we define the measure $\xi_x^{k,\beta}$ on $\mathbb{R}^d \times]0, \infty[$ by

$$d\xi_{x}^{k,\beta}(y) = a_{\beta}x_{d+1}^{-2\beta}(x_{d+1}^{2} - y_{d+1}^{d+1})^{\beta - \frac{1}{2}} \mathbf{1}_{[0,x_{d+1}]}(y_{d+1}) d\mu_{y}(y') dy_{d+1},$$

where $\mu_{\vec{x}}$ is a probability measure on \mathbb{R}^d , with support in the closed ball B(o, ||x||) of center o and radius ||x||. $1_{[0,x_{d+1}[}$ is the characteristic function of the interval $[0,x_{d+1}[$.

Definition 2 The Dunkl-Bessel intertwining operator is the operator $R_{k,\beta}$ defined on $C(R^{d+1})$ by

$$\mathsf{R}_{k,\beta}f(x',x_{d+1}) = a_{\beta}x_{d+1}^{-2\beta} \int_{0}^{x_{d+1}} (x_{d+1}^{2} - t^{2})^{\beta - \frac{1}{2}} V_{k}f(x',t)dt. \tag{4}$$

Remark 1 $R_{k,\beta}$ can also be written in the form

$$\forall x \in \mathsf{R}^d \times [0, \infty[, \mathsf{R}_{k,\beta} f(x)] = \int_{\mathsf{R}^d \times [0,\infty[} f(y) d\xi_x^{k,\beta}(y).$$

Proposition 1 $R_{k,\beta}$ is a topological isomorphism from $E(R^{d+1})$ onto itself satisfying the following

transmutation relation

$$\Delta_{k,\beta}(\mathsf{R}_{k,\beta}f) = \mathsf{R}_{k,\beta}(\Delta_{d+1}f), \forall f \in E(\mathsf{R}^{d+1}),$$

where $\Delta_{d+1} = \sum_{j=1}^{d+1} \frac{d^2}{dx_j^2}$ is the Laplacian on \mathbb{R}^{d+1} .

Definition 3 The dual of the Dunkl-Bessel intertwining operator $R_{k,\beta}$ is the operator $R_{k,\beta}$ defined on $D(R^{d+1})$ by: $\forall y = (y', y_{d+1}) \in R^d \times [0; \infty[$,

$${}^{t}\mathsf{R}_{k,\beta}(f)(y',y_{d+1}) = a_{\beta} \int_{y_{d+1}}^{\infty} (s^{2} - y_{d+1}^{2})^{\beta - \frac{1}{2}} {}^{t}V_{k}f(y',s)sds, \tag{5}$$

where ${}^{t}V_{k}$ is the dual Dunkl intertwining operator defined by

$$\forall y \in \mathbb{R}^d, {}^tV_k(y) = \int_{\mathbb{R}^d} f(x) dv_y(x), \tag{6}$$

and v_y is a positive measure on \mathbb{R}^d with support in the set $\{x \in \square^d, ||x|| \ge ||y||\}$.

Proposition 2 ${}^{t}R_{k,\beta}$ is a topological isomorphism from $S(R^{d+1})$ onto itself satisfying the following transmutation relation

$${}^{t}\mathsf{R}_{k,\beta}(\Delta_{k,\beta}f) = \Delta_{d+1}({}^{t}\mathsf{R}_{k,\beta}f), \forall f \in E(\mathsf{R}^{d+1}),$$

For all $y \in \mathbb{R}^d$, we define the measure $\rho_y^{k,\beta}$ on $\mathbb{R}^d \times [0,\infty[$, by

$$d\rho_{y}^{k,\beta}(x) = a_{\beta}(x_{d+1}^{2} - y_{d+1}^{2})^{\beta - \frac{1}{2}} x_{d+1} 1_{|y_{d+1},\infty[}(x_{d+1}) dv_{y}(x') dx_{d+1}.$$
 (7)

From (5) the operator ${}^{t}R_{k,\beta}$ can also be written in the form

$${}^{t}\mathsf{R}_{k,\beta}(f)(y) = \int_{\mathsf{R}^{d} \times [0,\infty]} f(x) d\rho_{y}^{k,\beta}(x). \tag{8}$$

We consider the function $\Lambda_{k,\beta}$, given for $\lambda = (\lambda', \lambda_{d+1}) \in \mathbb{C}^d \times \mathbb{C}$ by

$$\Lambda_{k,\beta}(x,\lambda) = K(x',-i\lambda')j_{\beta}(x_{d+1}\lambda_{d+1}),\tag{9}$$

where $j_{\beta}(x_{d+1}\lambda_{d+1})$ is the normalized Bessel function defined by

$$j_{\beta}(x_{d+1}\lambda_{d+1}) = a_{\beta} \int_{0}^{1} (1-t^{2})^{\beta-\frac{1}{2}} \cos(x_{d+1}\lambda_{d+1}t) dt$$

and $K(x',-i\lambda')$ is the Dunkl Kernel defined by

$$K(x',-i\lambda') = \int_{\mathbb{R}^d} e^{-i\langle y,\lambda'\rangle} d\mu_{x'}(y).$$

The Dunkl-Bessel-Laplace operator $\Delta_{k,\beta,n}$ and the function $\Lambda_{k,\beta}$ are related by the following relation

$$\Delta_{k,\beta}(\Lambda_{k,\beta})(x,\lambda) = -\|\lambda\|^2 \Lambda_{k,\beta}(x,\lambda). \tag{10}$$

The Dunkl-Bessel translation operators T_x are defined by

$$T_{x}f(y) = \tau_{x'} \otimes T^{\beta}_{x_{d+1}} f(y', y_{d+1}), \ y' \in \mathbb{R}^{d}, \ y_{d+1} > 0$$
(11)

where $\tau_{x'}$ is the Dunkl translation operator, and $T_{x_{d+1}}^{\beta}$ is the generalized translation operator associated with

the Bessel operator L_{β} . We denote by $L_{k,\beta}^{p}(\mathsf{R}^{d}\times\mathsf{R}_{+})$, $1\leq p\leq +\infty$ the space of measurable functions on $\mathsf{R}^{d}\times\mathsf{R}_{+}$ such that

$$||f||_{k,\beta,p} = \left(\int_{R^d \times R_+} |f(x)|^p A_{k,\beta}(x) dx\right)^{\frac{1}{p}} < +\infty, \text{ if } 1 \le p < +\infty,$$
(12)

$$||f||_{k,\beta,\infty} = \operatorname{ess} \sup_{x \in \mathbb{D}^d \times [0,+\infty[} |f(x)| < +\infty, \ if \ p = \infty$$
(13)

where

$$\mathsf{A}_{k,\beta}(x)dx = w_k(x')x_{d+1}^{2\beta+1}dx'dx_{d+1}, \ x = (x', x_{d+1}) \in \mathsf{R}^d \times \mathsf{R}^+. \tag{14}$$

Proposition 3 Let f be in $L^1_{k,\beta}(\mathbb{R}^d \times \mathbb{R}_+)$. Then

$$\int_{\mathsf{R}^d \times \mathsf{R}_+} {}^t \mathsf{R}_{k,\beta}(f)(y) dy = \int_{\mathsf{R}^d \times \mathsf{R}_+} f(x) \mathsf{A}_{k,\beta}(x) dx.$$

Theorem 1 Let $f \in L^1_{k,\beta}(\mathbb{R}^d \times \mathbb{R}_+)$ and g in $C(\mathbb{R}^{d+1})$, we have the formula

$$\int_{\mathbb{R}^d \times \mathbb{R}_+} {}^t \mathsf{R}_{k,\beta}(f)(y)g(y)dy = \int_{\mathbb{R}^d \times \mathbb{R}_+} f(x) \mathsf{R}_{k,\beta}(g)(x) \mathsf{A}_{k,\beta}(x)dx. \tag{15}$$

Definition 4 The Dunkl-Bessel transform is given for f in $D(\mathbb{R}^{d+1})$ by

$$\forall \lambda \in \mathsf{R}^d \times \mathsf{R}_+, \; \mathsf{F}_{k,\beta}(f)(\lambda) = \int_{\mathsf{R}^d \times \mathsf{R}_+} f(x) \Lambda_{k,\beta}(x,\lambda) \mathsf{A}_{k,\beta}(x) dx. \tag{16}$$

Remark 2 The relation (16) can also be written in the following form:

$$\forall \lambda = (\lambda', \lambda_{d+1}) \in \mathbb{R}^d \times \mathbb{R}_+, \ \mathsf{F}_{k,\beta}(f)(\lambda) = \mathsf{F}_k \circ \mathsf{F}_{\beta}(f)(\lambda), \tag{17}$$

where F_{k} is the Dunkl transform of a function ψ in R^{d} given by

$$\forall \lambda' \in \mathsf{R}^d, \ \mathsf{F}_k(\psi)(\lambda') = \int_{\mathsf{p}d} \psi(x') K(x', -i\lambda') w_k(x') dx' \tag{18}$$

and F_{β} is the Fourier-Bessel transform defined for $\ h \in D(\mathsf{R})$ by

$$\forall \lambda_{d+1} \in \mathsf{R}_{+}, \; \mathsf{F}_{\beta}(\lambda_{d+1}) = \int_{\mathsf{R}_{+}} h(t) j_{\beta}(\lambda_{d+1} t) t^{2\beta+1} dt. \tag{19}$$

Proposition 4

• For $f \in L^1_{k,\beta}(\mathbb{R}^d \times \mathbb{R}_+)$, we have

$$\parallel F_{k,\beta}(f) \parallel_{k,\beta,\infty} \leq \parallel f \parallel_{k,\beta,1}. \tag{20}$$

• For $f \in D(\mathbb{R}^{d+1})$, we have

$$\mathsf{F}_{k,\beta}(f) = \mathsf{F}_0 \circ {}^t \mathsf{R}_{k,\beta}(f), \tag{21}$$

where F_0 is the transform defined by $\forall \lambda = (\lambda', \lambda_{d+1}) \in \mathbb{R}^d \times \mathbb{R}_+$

$$\mathsf{F}_{0}(f)(\lambda',\lambda_{d+1}) = \int_{\mathsf{R}^{d}\times\mathsf{R}_{+}} f(x',x_{d+1}) e^{-i\langle\lambda',x'\rangle} \cos(x_{d+1}\lambda_{d+1}) dx' dx_{d+1}. \tag{22}$$

• For $f \in D(\mathbb{R}^{d+1})$, we have

$$\forall \lambda \in R^d \times R_+, \ F_{k,\beta}(\Delta_{k,\beta}f)(\lambda) = -\|\lambda\|^2 F_{k,\beta}(f)(\lambda). \tag{23}$$

Theorem 2 The inverse transform $\mathsf{F}_{k,B}^{-1}$ is given by

$$\forall \lambda \in \mathsf{R}^d \times \mathsf{R}_+, \ \mathsf{F}_{k,\beta}^{-1}(f)(y) = m_{k,\beta} \mathsf{F}_{k,\beta}(f)(-y) \tag{24}$$

with

$$m_{k,\beta} = \frac{c_k^2}{4^{\gamma+\beta+d} \left(\Gamma(\beta+1)\right)^2} \tag{25}$$

and c_k is given by Mehta integral

$$\frac{1}{c_k} = \int_{\mathbb{R}^d} \exp\left(-\|x\|^2\right) w_k dx$$

and

$$\gamma = \sum_{\alpha \in \mathsf{R}} k(\alpha). \tag{26}$$

Theorem 3 For all $f \in L^1_{k,\beta}(\mathbb{R}^d \times \mathbb{R}_+)$ such that $\mathsf{F}_{k,\beta}(f) \in L^1_{k,\beta}(\mathbb{R}^d \times \mathbb{R}_+)$, we have the inverse formula $f(y) = m_{k,\beta} \int_{\mathbb{R}^d \times \mathbb{R}_+} \mathsf{F}_{k,\beta}(f)(\lambda) \Lambda_{k,\beta}(-y,\lambda) \mathsf{A}_{k,\beta}(\lambda) d\lambda, \ a.e. \tag{27}$

Theorem 4 Plancherel formula: for all f in $D(\mathbb{R}^{d+1})$, we have

$$\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} |f(x)|^{2} \mathsf{A}_{k,\beta}(x) dx = m_{k,\beta} \int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} |\mathsf{F}_{k,\beta}(f)(\lambda)|^{2} \mathsf{A}_{k,\beta}(\lambda) d\lambda. \tag{28}$$

Definition 5 The translation operators T_x , $x \in \mathbb{R}^d \times \mathbb{R}_+$, associated with the Dunkl-Bessel operator are defined for $f \in L^2_{k,\beta}(\mathbb{R}^d \times \mathbb{R}_+)$ and $\lambda \in \mathbb{R}^d \times \mathbb{R}_+$ by

$$\mathsf{F}_{k,\beta}(T_x f)(\lambda) = \Lambda_{k,\beta}(x,\lambda) \mathsf{F}_{k,\beta}(f)(\lambda). \tag{29}$$

Proposition 5

• For all $x, y \in \mathbb{R}^d \times \mathbb{R}_+$ and $\lambda \in \mathbb{C}^{d+1}$, we have

$$T_{x}\Lambda_{k,\beta}(y,\lambda) = \Lambda_{k,\beta}(x,\lambda)\Lambda_{k,\beta}(y,\lambda). \tag{30}$$

• For $f \in E(\mathbb{R}^{d+1})$, and $g \in D(\mathbb{R}^{d+1})$, we have

$$\int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} T_{x} f(y) g(y) \mathsf{A}_{k,\beta}(y) dy = \int_{\mathbb{R}^{d} \times \mathbb{R}_{+}} f(y) T_{x} g(y) \mathsf{A}_{k,\beta}(y) dy. \tag{31}$$

Definition 6 The convolution product associated with the Dunkl-Bessel operator of two functions f and g in $D(\mathbb{R}^{d+1})$ is defined on $\mathbb{R}^d \times \mathbb{R}_+$ by

$$f *_{k,\beta} g(x) = \int_{\mathbb{R}^d \times \mathbb{R}_+} f(y) T_x g(y^-) A_{k,\beta}(y) dy,$$
 (32)

with $y^- = (-y', y_{d+1})$.

Proposition 6 Let $f \in L^2_{k,\beta}(\mathbb{R}^{d+1})$ and $g \in L^1_{k,\beta}(\mathbb{R}^{d+1})$, we have

$$F_{k,\beta}(f *_{k,\beta} g) = F_{k,\beta}(f)F_{k,\beta}(g).$$
 (33)

3 Harmonic analysis associated with $\Delta_{k,\beta,n}$

Throughout this section we denoted by

- $\mathsf{R}^{d+1}_+ = \mathsf{R}^d \times]0, \infty[$.
- M_n the map defined by $M_n f(x', x_{d+1}) = x_{d+1}^{2n} f(x', x_{d+1})$.
- $L^p_{k,\beta,n}(\mathsf{R}^{d+1}_+)$ the class of measurable functions f on R^{d+1}_+ for which

$$\parallel f \parallel_{k,\beta,n,p} = \parallel M_n^{-1} f \parallel_{k,\beta+2n,p} < \infty.$$

• $E_n(\mathsf{R}^{d+1})$ (resp. $D_n(\mathsf{R}^{d+1})$ and $S_n(\mathsf{R}^{d+1})$) stand for the subspace of $E(\mathsf{R}^{d+1})$ (resp. $D(\mathsf{R}^{d+1})$) and $S(\mathsf{R}^{d+1})$) consisting of functions f such that

$$f(x',0) = \left(\frac{d^k f}{dx_{d+1}^k}\right)(x',0) = 0, \forall k \in \{1,...2n-1\}.$$

We consider the function $\Lambda_{k,\beta,n}$, given for $\lambda = (\lambda', \lambda_{d+1}) \in \mathbb{C}^d \times \mathbb{C}$ by

$$\Lambda_{k,\beta,n}(x,\lambda) = x_{d+1}^{2n} \Lambda_{k,\beta+2n}(x,\lambda) = \mathsf{M}_n \Lambda_{k,\beta+2n}(x,\lambda). \tag{34}$$

Lemma 1

• The map M_n is an isomorphism

- from
$$E(\mathsf{R}^{d+1})$$
 onto $E_n(\mathsf{R}^{d+1})$.

- from
$$S(\mathbb{R}^{d+1})$$
 onto $S_n(\mathbb{R}^{d+1})$.

• For all $f \in E(\mathbf{R})$ we have

$$L_{\beta,n} \circ \mathsf{M}_n(f) = \mathsf{M}_n \circ L_{\beta+2n}(f), \tag{35}$$

where $L_{\beta,n}$ is the generalized Bessel operator given by (2).

• For all $f \in E(\mathbb{R}^{d+1})$

$$\Delta_{k,\beta,n} \circ \mathsf{M}_{n}(f)(x',x_{d+1}) = \mathsf{M}_{n} \circ \Delta_{k,\beta+2n}(f)(x',x_{d+1}). \tag{36}$$

Proof. For assertion (i) and (ii) (See [1]). For assertion (iii), using (1) and (35), we have for any $f \in E(\mathbb{R}^{d+1})$

$$\begin{split} & \Delta_{k,\beta,n} \circ \mathsf{M}_n f(x^{'},x_{d+1}) = \Delta_{k,x^{'}} \circ \mathsf{M}_n f(x^{'},x_{d+1}) + L_{\beta,n,x_{d+1}} \circ \mathsf{M}_n f(x^{'},x_{d+1}) \\ & = \Delta_{k,x^{'}} x_{d+1}^{2n} f(x^{'},x_{d+1}) + L_{\beta,n,x_{d+1}} x_{d+1}^{2n} f(x^{'},x_{d+1}) \\ & = x_{d+1}^{2n} \Delta_{k,x^{'}} f(x^{'},x_{d+1}) + x_{d+1}^{2n} L_{\beta+2n,x_{d+1}} f(x^{'},x_{d+1}) \\ & = \mathsf{M}_n \circ \Delta_{k-\beta+2n} (f)(x^{'},x_{d+1}), \end{split}$$

where $x' \in \mathbb{R}^d$ and $x_{d+1} > 0$.

Proposition 7 The function $\Lambda_{k,\beta,n}$ satisfies the differential equation

$$\Delta_{k,\beta,n}(\Lambda_{k,\beta,n})(x,\lambda) = -\|\lambda\|^2 \Lambda_{k,\beta,n}(x,\lambda).$$

Proof. From (34) we have

$$\Lambda_{k,\beta,n} = \mathsf{M}_n \circ \Lambda_{k,\beta+2n},$$

using (10) and (36) we obtain

$$\Delta_{k,\beta,n}(\Lambda_{k,\beta,n}) = \Delta_{k,\beta,n}(\mathsf{M}_n\Lambda_{k,\beta+2n})$$

$$= \mathsf{M}_n\Delta_{k,\beta+2n}(\Lambda_{k,\beta+2n})$$

$$= -\|\lambda\|^2 M_n\Lambda_{k,\beta+2n}$$

$$= -\|\lambda\|^2 \Lambda_{k,\beta,n}(x,\lambda).$$

Definition 7 The generalized Dunkl-Bessel intertwining operator is the operator $R_{k,\beta,n}$ defined on $C(R^{d+1})$ by

$$\mathsf{R}_{k,\beta,n}f(x) = a_{\beta+2n}x_{d+1}^{-2(\beta+n)} \int_0^{x_{d+1}} (x_{d+1}^2 - t^2)^{\beta+2n-\frac{1}{2}} V_k f(x',t) dt.$$

Remark 3

• From (4) it is easily checked that

$$\mathsf{R}_{k,\beta,n} = \mathsf{M}_n \circ \mathsf{R}_{k,\beta+2n}. \tag{37}$$

• From Definition 1, Remark 1 and (37) $R_{k,\beta,n}$ can also be written in the form

$$\forall x \in \mathsf{R}^{d+1}, \mathsf{R}_{k,\beta,n} f(x) = \int_{\mathsf{R}^{d+1}} x_{d+1}^{2n} f(y) d\xi_x^{k,\beta+2n}(y).$$

Proposition 8 $R_{k,\beta,n}$ is a topological isomorphism from $E(R^{d+1})$ onto $E_n(R^{d+1})$ satisfying the following transmutation relation

$$\Delta_{k,\beta,n}(\mathsf{R}_{k,\beta,n}f) = \mathsf{R}_{k,\beta,n}(\Delta_{d+1}f), \forall f \in E(\mathsf{R}^{d+1}),$$

where $\Delta_{d+1} = \sum_{j=1}^{d+1} \frac{d^2}{dx_i^2}$ is the Laplacian on \mathbb{R}^{d+1} .

Proof. The result follows directly from (37), Proposition 1 and Lemma 1.((i) and (iii)).

Definition 8 The dual of the generalized Dunkl-Bessel intertwining operator $R_{k,\beta,n}$ is the operator defined on $D_n(R^{d+1})$ by: $\forall y = (y', y_{d+1}) \in R^d \times]0; \infty[$,

$${}^{t}\mathsf{R}_{k,\beta,n}(f)(y',y_{d+1}) = a_{\beta+2n} \int_{y_{d+1}}^{\infty} (s^2 - y_{d+1}^2)^{\beta+2n-\frac{1}{2}} {}^{t}V_k f(y',s) s^{1-2n} ds. \tag{38}$$

Remark 4

• Due to (5) and (38)

$${}^{t}\mathsf{R}_{k,\beta,n} = {}^{t}\mathsf{R}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}. \tag{39}$$

• By (7), (8) and (39) we can deduce that

$${}^{t}\mathsf{R}_{k,\beta,n}(f)(y) = \int_{\mathsf{R}_{\perp}^{d+1}} x_{d+1}^{-2n} f(x) d\rho_{y}^{k,\beta+2n}(x)$$

where $x = (x', x_{d+1}) \in \mathbb{R}^d \times]0, \infty[.$

Proposition 9 ${}^{t}\mathsf{R}_{k,\beta}$ is a topological isomorphism from $S_n(\mathsf{R}^{d+1})$ onto $S(\mathsf{R}^{d+1})$ satisfying the following transmutation relation

$${}^{t}\mathsf{R}_{k,\beta}(\Delta_{k,\beta}f) = \Delta_{d+1}({}^{t}\mathsf{R}_{k,\beta}f), \forall f \in S_{n}(\mathsf{R}^{d+1}).$$

Proof. The result follows directly from (39), Proposition 2 and Lemma 1.((i) and (iii)).

Proposition 10 Let f be in $L^1_{k,\beta,n}(R^{d+1}_+)$. Then

$$\int_{\mathsf{R}_{+}^{d+1}} {}^{t}\mathsf{R}_{k,\beta,n}(f)(y)dy = \int_{\mathsf{R}_{+}^{d+1}} f(x)\mathsf{A}_{k,\beta+n}(x)dx.$$

Proof. An easily combination of (14), (39) and Proposition 1 shows that

$$\int_{\mathbb{R}^{d+1}_{+}} {}^{t} \mathbb{R}_{k,\beta,n}(f)(y) dy = \int_{\mathbb{R}^{d+1}_{+}} {}^{t} \mathbb{R}_{k,\beta+2n} \mathbb{M}_{n}^{-1}(f)(y) dy
= \int_{\mathbb{R}^{d+1}_{+}} \mathbb{M}_{n}^{-1}(f)(x) \mathbb{A}_{k,\beta+2n}(x) dx
= \int_{\mathbb{R}^{d+1}_{+}} x_{d+1}^{-2n} f(x) \mathbb{A}_{k,\beta+2n}(x) dx$$

$$= \int_{\mathbb{R}^{d+1}} f(x) \mathsf{A}_{k,\beta+n}(x) dx.$$

Theorem 5 Let $f \in L^1_{k,\beta,n}(\mathbb{R}^{d+1}_+)$ and $g \in C(\mathbb{R}^{d+1})$, we have the following formula $\int_{\mathbb{R}^{d+1}_+} {}^t \mathsf{R}_{k,\beta,n}(f)(y) g(y) dy = \int_{\mathbb{R}^{d+1}} f(x) \mathsf{R}_{k,\beta,n}(g)(x) \mathsf{A}_{k,\beta+n}(x) dx.$

Proof. From (15) and (39) we obtain

$$\begin{split} & \int_{\mathsf{R}^{d+1}_+} {}^t \mathsf{R}_{k,\beta,n}(f)(y) g(y) dy = \int_{\mathsf{R}^{d+1}_+} {}^t \mathsf{R}_{k,\beta+2n} \circ \mathsf{M}_n^{-1}(f)(y) g(y) dy \\ & = \int_{\mathsf{R}^{d+1}_+} \mathsf{M}_n^{-1}(f)(x) \mathsf{R}_{k,\beta+2n}(g)(x) \mathsf{A}_{k,\beta+2n}(x) dx \\ & = \int_{\mathsf{R}^{d+1}_+} x_{d+1}^{-2n} f(x) \mathsf{R}_{k,\beta+2n}(g)(x) \mathsf{A}_{k,\beta+2n}(x) dx \\ & = \int_{\mathsf{R}^{d+1}_+} f(x) \mathsf{R}_{k,\beta,n}(g)(x) \mathsf{A}_{k,\beta+n}(x) dx. \end{split}$$

Definition 9 The generalized Dunkl-Bessel transform is given for f in $D_n(\mathbb{R}^{d+1})$ by

$$\forall \lambda \in \mathsf{R}^d \times \mathsf{R}_+, \; \mathsf{F}_{k,\beta,n}(f)(\lambda) = \int_{\mathsf{R}^d \times \mathsf{R}_+} f(x) \Lambda_{k,\beta,n}(x,\lambda) \mathsf{A}_{k,\beta}(x) dx. \tag{40}$$

Remark 5

• Due to (14), (16) and (34) we have

$$\mathsf{F}_{k,\beta,n} = \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_n^{-1}. \tag{41}$$

• By (17) and (41) we can deduce that

$$\mathsf{F}_{k,\beta,n} = \mathsf{F}_{k} \left(\mathsf{F}_{\beta+2n} \circ \mathsf{M}_{n}^{-1} \right)$$

Proposition 11

• For $f \in L^1_{k,\beta,n}(\mathbb{R}^d \times \mathbb{R}_+)$, we have

$$\parallel F_{k,\beta,n}(f) \parallel_{k,\beta,\infty} \leq \parallel f \parallel_{k,\beta,n,1}$$

• For $f \in D_n(\mathbb{R}^{d+1})$, we have

$$\mathsf{F}_{k,\beta,n}(f) = \mathsf{F}_0 \circ {}^t \mathsf{R}_{k,\beta,n}(f),$$

where F_0 is the transform defined by $\forall \lambda = (\lambda', \lambda_{d+1}) \in \mathbb{R}^d \times \mathbb{R}_+$

$$\mathsf{F}_{0}(f)(\lambda',\lambda_{d+1}) = \int_{\mathsf{R}^{d}\times\mathsf{R}_{+}} f(x',x_{d+1}) e^{-i<\lambda',x_{d+1}>} \cos(x_{d+1}\lambda_{d+1}) dx' dx_{d+1}.$$

• For $f \in D(\mathbb{R}^{d+1})$, we have

$$\forall \lambda \in R^d \times R_+, \ F_{k,\beta,n}(\Delta_{k,\beta,n}f)(\lambda) = - \| \lambda \|^2 F_{k,\beta,n}(f)(\lambda).$$

Proof. From (20) and (41) we have

$$\begin{split} & \left\| F_{k,\beta,n}(f) \right\|_{k,\beta,\infty} = \left\| F_{k,\beta+2n} \circ M_n^{-1}(f) \right\|_{k,\beta,\infty} \\ & \leq \left\| M_n^{-1} f \right\|_{k,\beta+2n,1} \\ & \leq \left\| f \right\|_{k,\beta,n,1}. \end{split}$$

which proves assertion (i).

By (21), (39) and (41) we obtain

$$\begin{aligned} &\mathsf{F}_{k,\beta,n}(f) = \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_n^{-1}(f) \\ &= \mathsf{F}_0 \circ {}^t \mathsf{R}_{k,\beta+2n} \circ \mathsf{M}_n^{-1}(f) \\ &= \mathsf{F}_0 \circ {}^t \mathsf{R}_{k,\beta,n}(f), \end{aligned}$$

which proves assertion (ii).

Due to (23), (36) and (41) we have

$$\begin{split} &\mathsf{F}_{k,\beta,n}(\Delta_{k,\beta,n}f)(\lambda) = \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_n^{-1}(\Delta_{k,\beta,n}f)(\lambda) \\ &= \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_n^{-1}(\Delta_{k,\beta,n}f)(\lambda) \\ &= \mathsf{F}_{k,\beta+2n}(\Delta_{k,\beta+2n}\mathsf{M}_n^{-1}f)(\lambda) \\ &= -\|\lambda\|^2 \, F_{k,\beta+2n} \circ M_n^{-1}(f)(\lambda) \\ &= -\|\lambda\|^2 \, F_{k,\beta,n}(f)(\lambda). \end{split}$$

Theorem 6 The inverse of the Dunkl-Bessel transform $F_{k,\beta,n}$ is given by

$$\forall y \in \mathbb{R}^d \times \mathbb{R}_+, \ \mathsf{F}_{k,\beta,n}^{-1}(f)(y) = m_{k,\beta+2n} \mathsf{F}_{k,\beta,n}(f)(-y). \tag{42}$$

Proof. By (24) and (41) we have

$$\begin{aligned} &\mathsf{F}_{k,\beta,n}(f)(y) = \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(f)(y) \\ &\mathsf{F}_{k,\beta,n}^{-1}(f)(y) = \mathsf{M}_{n} \circ \mathsf{F}_{k,\beta+2n}^{-1}(f)(y) \\ &= m_{k,\beta+2n} \mathsf{M}_{n} \circ \mathsf{F}_{k,\beta+2n}(f)(-y) \\ &= m_{k,\beta+2n} \mathsf{F}_{k,\beta,n}(f)(-y). \end{aligned}$$

Theorem 7 For all $f \in L^1_{k,\beta,n}(\mathsf{R}^{d+1}_+)$ such that $\mathsf{F}_{k,\beta,n}(f) \in L^1_{k,\beta,n}(\mathsf{R}^{d+1}_+)$, we have the inverse formula

$$f(y) = m_{k,\beta+2n} \int_{\mathbb{R}^d \times \mathbb{R}_+} \mathsf{F}_{k,\beta,n}(f)(\lambda) \Lambda_{k,\beta,n}(-y,\lambda) \mathsf{A}_{k,\beta+2n}(\lambda) d\lambda, \ a.e. \tag{43}$$

Proof. An easily combination of (14), (27), (34) and (41) shows that

$$m_{k,\beta+2n} \int_{\mathbb{R}^d_+} |F_{k,\beta,n}(f)(\lambda) \Lambda_{k,\beta,n}(-y,\lambda) A_{k,\beta+2n}(\lambda) d\lambda$$

$$= m_{k,\beta+2n} \int_{\mathsf{R}^{d+1}_{+}} \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(f)(\lambda) y_{d+1}^{2n} \Lambda_{k,\beta+2n}(-y,\lambda) \mathsf{A}_{k,\beta+2n}(\lambda) d\lambda$$

$$= y_{d+1}^{2n} \mathsf{M}_{n}^{-1} f(y)$$

$$= f(y).$$

Theorem 8 Plancherel formula: for all f in $D_n(\mathbb{R}^{d+1})$, we have

$$\int_{\mathsf{R}_{+}^{d+1}} |f(x)|^{2} \mathsf{A}_{k,\beta}(x) dx = m_{k,\beta+2n} \int_{\mathsf{R}_{+}^{d+1}} |\mathsf{F}_{k,\beta,n}(f)(\lambda)|^{2} \mathsf{A}_{k,\beta+2n}(\lambda) d\lambda.$$

Proof. By (41) we have

$$\int_{\mathsf{R}_{+}^{d+1}} |\mathsf{F}_{k,\beta,n}(f)(\lambda)|^{2} \mathsf{A}_{k,\beta+2n}(\lambda) d\lambda = \int_{\mathsf{R}_{+}^{d+1}} |\mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(f)(\lambda)|^{2} \mathsf{A}_{k,\beta+2n}(\lambda) d\lambda,$$

using (28) we get

$$m_{k,\beta+2n} \int_{\mathsf{R}_{+}^{d+1}} |\mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(f)(\lambda)|^{2} \mathsf{A}_{k,\beta+2n}(\lambda) d\lambda = \int_{\mathsf{R}_{+}^{d+1}} |\mathsf{M}_{n}^{-1}f(x)|^{2} \mathsf{A}_{k,\beta+2n}(x) dx$$
$$= \int_{\mathsf{R}_{+}^{d+1}} |f(x)|^{2} \mathsf{A}_{k,\beta}(x) dx.$$

Definition 10 The generalized Dunkl-Bessel translation operators T_x associated with $\Delta_{k,\beta,n}$ are defined by

$$\mathsf{T}_{x} = x_{d+1}^{2n} \mathsf{M}_{n} \circ T_{x} \circ \mathsf{M}_{n}^{-1}. \tag{44}$$

Remark 6 By (11) and (44) it is easily checked that

$$T_x f(y) = \tau_x \otimes T_{x_{d+1}}^{\beta, n} f(y, y_{d+1})$$

where $\,T_{x_{d+1}}^{\,eta,n}\,\,$ are the generalized Bessel translation operators defined by

$$T_{x_{d+1}}^{\beta,n} = x_{d+1}^{2n} \mathsf{M}_n \circ T_{x_{d+1}}^{\beta+2n} \circ \mathsf{M}_n^{-1}.$$

Proposition 12 Let
$$f \in L^2_{k,\beta}(\mathsf{R}^{d+1}_+)$$
, $x \in \mathsf{R}^{d+1}_+$ and $\lambda \in \mathsf{R}^{d+1}_+$ then
$$\mathsf{F}_{k,\beta,n}(\mathsf{T}_x f)(\lambda) = \Lambda_{k,\beta,n}(x,\lambda) \mathsf{F}_{k,\beta,n}(f)(\lambda).$$

Proof. Using (29), (34), (41) and (44) we get

$$\begin{aligned} &\mathsf{F}_{k,\beta,n}(\mathsf{T}_{x}f)(\lambda) = \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(x_{d+1}^{2n}\mathsf{M}_{n} \circ T_{x} \circ \mathsf{M}_{n}^{-1}(f))(\lambda) \\ &= \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(x_{d+1}^{2n}\mathsf{M}_{n} \circ T_{x} \circ \mathsf{M}_{n}^{-1}(f))(\lambda) \\ &= x_{d+1}^{2n}\mathsf{F}_{k,\beta+2n}(T_{x} \circ \mathsf{M}_{n}^{-1}(f))(\lambda) \\ &= x_{d+1}^{2n}\Lambda_{k,\beta+2n}(x,\lambda)\mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_{n}^{-1}(f)(\lambda) \\ &= \Lambda_{k,\beta,n}(x,\lambda)\mathsf{F}_{k,\beta,n}(f)(\lambda). \end{aligned}$$

Proposition 13

• For all
$$x, y \in \mathbb{R}^{d+1}_+$$
 and $\lambda \in \mathbb{C}^{d+1}$, we have

$$\mathsf{T}_{x}\Lambda_{k,\beta,n}(y,\lambda) = \Lambda_{k,\beta,n}(x,\lambda)\Lambda_{k,\beta,n}(y,\lambda).$$

• For
$$f \in E(\mathbb{R}^{d+1})$$
, and $g \in D(\mathbb{R}^{d+1})$, we have
$$\int_{\mathbb{R}^{d+1}} T_x f(y) g(y) \mathsf{A}_{k,\beta}(y) dy = \int_{\mathbb{R}^{d+1}} f(y) T_x g(y) \mathsf{A}_{k,\beta}(y) dy.$$

Proof. An easily combination of (30), (34) and (44) shows that

$$\begin{split} & \mathsf{T}_{x} \Lambda_{k,\beta,n}(y,\lambda) = x_{d+1}^{2n} \mathsf{M}_{n} \circ T_{x} \circ \mathsf{M}_{n}^{-1} \Lambda_{k,\beta,n}(y,\lambda) \\ & = x_{d+1}^{2n} \mathsf{M}_{n} \circ T_{x} \Lambda_{k,\beta+2n}(y,\lambda) \\ & = x_{d+1}^{2n} y_{d+1}^{2n} T_{x} \Lambda_{k,\beta+2n}(y,\lambda) \\ & = x_{d+1}^{2n} y_{d+1}^{2n} \Lambda_{k,\beta+2n}(x,\lambda) \Lambda_{k,\beta+2n}(y,\lambda) \\ & = \Lambda_{k,\beta,n}(x,\lambda) \Lambda_{k,\beta,n}(y,\lambda). \end{split}$$

which proves assertion (i).

By (14), (31) and (44) we obtain

$$\begin{split} &\int_{\mathsf{R}^{d+1}_+} \mathsf{T}_x f(y) g(y) \mathsf{A}_{k,\beta}(y) dy = \int_{\mathsf{R}^{d+1}_+} x_{d+1}^{2n} \mathsf{M}_n \circ T_x \circ \mathsf{M}_n^{-1} f(y) g(y) \mathsf{A}_{k,\beta}(y) dy \\ &= \int_{\mathsf{R}^{d+1}_+} x_{d+1}^{2n} T_x \circ \mathsf{M}_n^{-1} f(y) \mathsf{M}_n^{-1} g(y) \mathsf{A}_{k,\beta+2n}(y) dy \\ &= \int_{\mathsf{R}^{d+1}_+} \mathsf{M}_n^{-1} f(y) x_{d+1}^{2n} T_x \circ \mathsf{M}_n^{-1} g(y) \mathsf{A}_{k,\beta+2n}(y) dy \\ &= \int_{\mathsf{R}^{d+1}_+} f(y) x_{d+1}^{2n} \mathsf{M}_n \circ T_x \circ \mathsf{M}_n^{-1} g(y) \mathsf{A}_{k,\beta}(y) dy \\ &= \int_{\mathsf{R}^{d+1}_+} f(y) \mathsf{T}_x g(y) \mathsf{A}_{k,\beta}(y) dy. \end{split}$$

Definition 11 The convolution product associated with the generalized Dunkl-Bessel operator of two functions f and g in $D_n(\mathbb{R}^{d+1})$ is defined on \mathbb{R}^{d+1}_+ by

$$f *_{k,\beta,n} g(x) = \int_{\mathbb{R}^{d+1}_+} f(y) \mathsf{T}_x g(y^-) \mathsf{A}_{k,\beta}(y) dy, \tag{45}$$

with $y^- = (-y', y_{d+1})$.

Proposition 14 Let f and g in $D_n(\mathbb{R}^{d+1})$, we have

$$f *_{k,\beta,n} g = \mathsf{M}_n \Big[(\mathsf{M}_n^{-1} f) *_{k,\beta+2n} (\mathsf{M}_n^{-1} g) \Big]$$
 (46)

Proof. From (32), (44) and (45) we obtain

$$f *_{k,\beta,n} g(x) = \int_{\mathsf{R}_{+}^{d+1}} f(y) \mathsf{T}_{x} g(y^{-}) \mathsf{A}_{k,\beta}(y) dy$$

$$= \int_{\mathsf{R}_{+}^{d+1}} f(y) x_{d+1}^{2n} \mathsf{M}_{n} \circ T_{x} \circ \mathsf{M}_{n}^{-1} g(y^{-}) \mathsf{A}_{k,\beta}(y) dy$$

$$= x_{d+1}^{2n} \int_{\mathsf{R}_{+}^{d+1}} \mathsf{M}_{n}^{-1} f(y) T_{x} \circ \mathsf{M}_{n}^{-1} g(y^{-}) \mathsf{A}_{k,\beta+2n}(y) dy$$

$$= \mathsf{M}_{n} \Big[(\mathsf{M}_{n}^{-1} f) *_{k,\beta+2n} (\mathsf{M}_{n}^{-1} g) \Big]$$

Proposition 15 Let
$$f \in L^{2}_{k,\beta,n}(\mathsf{R}^{d+1}_{+})$$
 and $g \in L^{1}_{k,\beta,n}(\mathsf{R}^{d+1}_{+})$, then
$$\mathsf{F}_{k,\beta,n}(f *_{k,\beta,n} g) = \mathsf{F}_{k,\beta,n}(f)\mathsf{F}_{k,\beta,n}(g). \tag{47}$$

Proof. By (46) we have

$$f *_{k,\beta,n} g = \mathsf{M}_n \Big[(\mathsf{M}_n^{-1} f) *_{k,\beta+2n} (\mathsf{M}_n^{-1} g) \Big]$$
using (33) and (41) we get
$$\mathsf{F}_{k,\beta,n} (f *_{k,\beta,n} g) = \mathsf{F}_{k,\beta,n} \circ \mathsf{M}_n \Big[(\mathsf{M}_n^{-1} f) *_{k,\beta+2n} (\mathsf{M}_n^{-1} g) \Big]$$

$$= \mathsf{F}_{k,\beta+2n} \circ \mathsf{M}_n^{-1} \circ \mathsf{M}_n \Big[(\mathsf{M}_n^{-1} f) *_{k,\beta+2n} (\mathsf{M}_n^{-1} g) \Big]$$

$$= \mathsf{F}_{k,\beta+2n} \Big[(\mathsf{M}_n^{-1} f) *_{k,\beta+2n} (\mathsf{M}_n^{-1} g) \Big]$$

$$= \mathsf{F}_{k,\beta+2n} (\mathsf{M}_n^{-1} f) \mathsf{F}_{k,\beta+2n} (\mathsf{M}_n^{-1} g)$$

$$= \mathsf{F}_{k,\beta+2n} (f) \mathsf{F}_{k,\beta,n} (g).$$

References

- [1]. R. F. Al Subaie and M. A. Mourou, Transmutation Operators Associated with a Bessel Type Op-erator on The Half Line and Certain of Their Applications, Tamsui Oxford Journal of Information and Mathematical Sciences 29(3) (2013) 329-349.
- [2]. A. Hassini and K. Trimèche, Wavelets and Generalized Windowed Transforms Associated with the Dunkl-Bessel-Laplace Operator on $\mathbb{R}^d \times \mathbb{R}$, Mediterr. J. Math. DOI 10.1007/s00009-015-0540-4.
- [3]. H. Mejjaoli, An Analogue of Beurling-Hörmader's Theorem for the Dunkl-Bessel Transform, fractional calculus and applied analysis, volume 9, number 3 (2006), ISSN 1311-0454.
- [4]. H. Mejjaoli and K. Trimèche, Harmonic analysis associated with the Dunkl-Bessel-Laplace operator and a mean value property, Fract.Calc.Appl.Anal. Vol 4, (4), 443-480, (2001).