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1  Introduction 

 In this paper we consider the generalized Dunkl-Bessel-Laplace operator defined by  
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 where k  is the Dunkl-Laplacian operator on 
dR  (see[2]), nL ,  is the generalized Bessel operator on 

[]0,  given by  
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k  is a multiplicity function (see [3]) and . 0,1,...=n  For 0=n , we regain the Dunkl-Bessel-Laplace 

operator.  
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 Through this paper, we provide a new harmonic analysis on []0,dR  corresponding to the generalized 

Dunkl-Bessel-Laplace operator nk ,, . 

The outline of the content of this paper is as follows. 

Section 2 is dedicated to some properties and results concerning the Dunkl-Laplace-Bessel operator . 

In section 3, we construct the generalized Dunkl-Bessel intertwining operator nk ,,R  and its dual 

nk

t

,,R , next we exploit these operators to build a new harmonic analysis on []0,dR  corresponding to 

operator .,, nk   

 

2  Preliminaries 
 Throughout this paper, we denote by   
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    • )( 1dC R  the space of continuous functions on ,1dR  even with respect to the last variable.  
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    • )( 1dE R  (resp. )( 1dD R ) the space of 
C  functions on ,1dR  even with respect to the last variable 

(resp. with compact support).  

    • )( 1dS R  the Schwartz space of rapidly decreasing functions on 
1dR  which are even with respect to the 

last variable.  

    • R  the root system in {0}\dR , R  is a fixed positive subsystem and []0,Rk  a multiplicity 

function.  

    • jT  the Dunkl operator defined for ,1,...,= dj  on 
dR  and )( dEf R  by  
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where ><,  is the usual scalar product,   is the orthogonal reflection in the hyperplane orthogonal to   and 

the multiplicity function k  is invariant by the finite reflection group W  generated by the reflection 

)( R .  

    • k  the Dunkl-Laplace operator defined by  
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    • kw  the weight function defined by  
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 In this section we recall some facts about harmonic analysis related to the Dunkl-Bessel-Laplace operator .,k  

We cite here, as briefly as possible, only some properties. For more details we refer to [2, 3, 4]. 

 

Definition 1 For all []0, dx R  we define the measure 
 ,k

x  on []0,dR  by  
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where 'x
  is a probability measure on ,dR  with support in the closed ball ( , )B o x  of center o  and radius 

x . [
1

]0,1
d

x  is the characteristic function of the interval []0, 1dx .  

 

 

Definition 2 The Dunkl-Bessel intertwining operator is the operator ,kR  defined on )( 1dC R  by  
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Remark 1 ,kR  can also be written in the form  
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Proposition 1 ,kR  is a topological isomorphism from )( 1dE R  onto itself satisfying the following 
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transmutation relation  
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Definition 3 The dual of the Dunkl-Bessel intertwining operator ,kR  is the operator ,k
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 where k

tV  is the dual Dunkl intertwining operator defined by  

 ),()(=)( , xdxfyVy ydk
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R
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 and y  is a positive measure on 
dR  with support in the set  , .dx x y   

 

Proposition 2 ,k

tR  is a topological isomorphism from )( 1dS R  onto itself satisfying the following 

transmutation relation  

 ),( ),(=)( 1

,1,,



  d

k

t

dkk

t Efff RRR   

 

 For all ,dy R  we define the measure 
 ,k

y  on [,[0,dR  by  

 .)()(1)(=)( 1

'

'1[,
1

]1
2

1

2

1

2

1

,








  dyd
d

yddd

k

y dxxdxxyxaxd 





 (7) 

 From (5) the operator ,k

tR  can also be written in the form  
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 We consider the function ,k , given for CC 

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 where )( 11  ddxj   is the normalized Bessel function defined by  
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The Dunkl-Bessel-Laplace operator nk ,,  and the function ,k  are related by the following relation  
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 The Dunkl-Bessel translation operators xT  are defined by 
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 where x  is the Dunkl translation operator, and 


1d
xT  is the generalized translation operator associated with 
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the Bessel operator L . We denote by   pL dp

k 1  ),(, RR  the space of measurable functions on 

RRd
 such that 
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Definition 4 The Dunkl-Bessel transform is given for f  in )( 1dD R  by  
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Remark 2 The relation (16) can also be written in the following form:  

 ),)((=))((  ,),(= ,1   ff kk

d

d FFFRR    (17) 

 

 where kF  is the Dunkl transform of a function   in 
dR  given by  
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 and F  is the Fourier-Bessel transform defined for )(RDh  by 
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 ),( =)( ,0, ff k
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 where 0F  is the transform defined by   RRd
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    • For )( 1 dDf R , we have  
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Theorem 4 Plancherel formula: for all f  in )( 1dD R , we have  
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Definition 5 The translation operators  RRd

x xT   , , associated with the Dunkl-Bessel operator are 

defined for )(2
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Proposition 5  

    • For all  RRdyx,  and 
1 dC , we have  
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Definition 6 The convolution product associated with the Dunkl-Bessel operator of two functions f  and g  in 
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3  Harmonic analysis associated with nk ,,  

 Throughout this section we denoted by   
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 We consider the function nk ,, , given for CC 


d

d ),(= 1  by  

 ).,(=),(=),( 2,2,

2

1,,   xxxx nknnk

n

dnk   M  (34) 

 

 

 

Lemma 1  

    • The map nM  is an isomorphism   

        - from )( 1dE R  onto )( 1d

nE R .  



  International 

     Journal 

Of Advanced Research in Engineering & Management (IJAREM) 

 

 
| Vol. 01 | Issue 04 | July 2015 | 89 | 

        - from )( 1dS R  onto )( 1d

nS R .  

 

    • For all )(REf   we have  
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 where nL ,  is the generalized Bessel operator given by (2).  
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Proposition 7 The function nk ,,  satisfies the differential equation  
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Definition 7 The generalized Dunkl-Bessel intertwining operator is the operator nk ,,R  defined on )( 1dC R  
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Remark 3  
    • From (4) it is easily checked that  
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    • From Definition 1, Remark 1 and (37) nk ,,R  can also be written in the form  
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Proposition 8 nk ,,R  is a topological isomorphism from )( 1dE R  onto )( 1d
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transmutation relation  
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Proof. The result follows directly from (37), Proposition 1 and Lemma 1.((i) and (iii)).    

 

Definition 8 The dual of the generalized Dunkl-Bessel intertwining operator nk ,,R  is the operator defined on 

)( 1d

nD R  by: [,]0;),(= 1

'  

d

dyyy R  

 .),( )(=),)(( 21'2

1
2

2

1

2

1
21

'

,, dsssyfVysayyf n

k

t
n

d
d

y
ndnk

t 







 



R  (38) 

 

Remark 4  
    • Due to (5) and (38)  

 .= 1

2,,,



 nnk

t

nk

t MRR   (39) 

 

    • By (7), (8) and (39) we can deduce that  

 )()(=))(( 2,2

11,, xdxfxyf nk

y

n

ddnk

t 






 

R
R  

where [.]0,),(= 1

' 

d

dxxx R  

 

 

 

Proposition 9 ,k

tR  is a topological isomorphism from )( 1d

nS R  onto )( 1dS R  satisfying the following 

transmutation relation  

 ).( ),(=)( 1

,1,,



  d

nk

t

dkk

t Sfff RRR   

 

Proof. The result follows directly from (39), Proposition 2 and Lemma 1.((i) and (iii)).    

 

Proposition 10 Let f  be in ).( 11

,,





d

nkL R  Then  

 .)()(=))(( ,1,,1
dxxxfdyyf nkdnk

t

d 





  AR
RR

 

 

Proof. An easily combination of (14), (39) and Proposition 1 shows that  

 dyyfdyyf nnk

t

dnk

t

d
))(( =))(( 1

2,1,,1









 MRR
RR

  

 dxxxf nknd
)())((= 2,

1

1 





 AM
R

 

 dxxxfx nk

n

dd
)()(= 2,

2

11 





 A
R
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 .)()(= ,1
dxxxf nkd 


 A
R

 

 

 

Theorem 5 Let )( 11

,,



 d

nkLf R  and )( 1 dCg R , we have the following formula  

 .)())(()(=)())(( ,,,1,,1
dxxxgxfdyygyf nknkdnk

t

d 





  ARR
RR

 

 

Proof. From (15) and (39) we obtain  

 dyygyfdyygyf nnk

t

dnk

t

d
)())(( =)())(( 1

2,1,,1









 MRR
RR

  

 dxxxgxf nknknd
)())(())((= 2,2,

1

1 





  ARM
R

 

 dxxxgxfx nknk

n

dd
)())(()(= 2,2,

2

11 





  AR
R

 

 .)())(()(= ,,,1
dxxxgxf nknkd 


  AR
R

 

 

Definition 9 The generalized Dunkl-Bessel transform is given for f  in )( 1d

nD R  by  

 .)(),()(=))((  , ,,,,, dxxxxff knkdnk

d

  AFRR
RR

 



  (40) 

 

 

Remark 5  
    • Due to (14), (16) and (34) we have  

 .= 1

2,,,



 nnknk MFF   (41) 

 

    • By (17) and (41) we can deduce that  

  .= 1

2,,



 nnknk MFFF   

 

 

 

Proposition 11  

    • For )(1

,,  RRd

nkLf  , we have 

 

 
, , , , , , ,1

( ) .k n k k n
F f f  

  

 

    • For )( 1 d

nDf R , we have 

 

 ),( =)( ,,0,, ff nk

t

nk  RFF   

where 0F  is the transform defined by   RRd

d ),(= 1  

 

 .)(cos),(=),)(( 111

>
1

,<

110 










  ddd
d

xi

ddd dxxdxexxff 


RR
F  

 

    • For )( 1 dDf R , we have 
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2

, , , , , ,,  ( )( ) = ( )( ).d

k n k n k nR R F f F f           

 

 

Proof. From (20) and (41) we have  

 
1

, , , 2, , , ,
( ) = ( )k n k n nk k

F f F M f  



 
  

 
1

, 2 ,1n k n
M f






  

 
, , ,1

.
k n

f


  

 which proves assertion (i). 

By (21), (39) and (41) we obtain  

 )(=)( 1

2,,, ff nnknk



 MFF   

 )( = 1

2,0 fnnk

t 

 MRF    

 ),( = ,,0 fnk

t

RF   

 which proves assertion (ii). 

Due to (23), (36) and (41) we have  

 ))((=))(( ,,

1

2,,,,,   ff nknnknknk  

 MFF   

 ))((= ,,

1

2,  fnknnk 

 MF   

 ))((= 1

2,2,  fnnknk



  MF  

 
2 1

, 2= ( )( )k n nF M f 

   

 
2

, ,= ( )( ).k nF f   

 

 

Theorem 6 The inverse of the Dunkl-Bessel transform nk ,,F  is given by  

 ).)((=))((  , ,,2,

1

,, yfmyfy nknknk

d  



  FFRR  (42) 

 

Proof. By (24) and (41) we have  

 ))((=))(( 1

2,,, yfyf nnknk



 MFF   

 ))((=))(( 1

2,

1

,, yfyf nknnk







 FMF   

 ))((= 2,2, yfm nknnk   FM   

 ).)((= ,,2, yfm nknk   F  

 

Theorem 7 For all )( 11

,,



 d

nkLf R  such that )()( 11

,,,,



 d

nknk Lf RF  , we have the inverse formula  

 ..  ,)(),())((=)( 2,,,,,2, eadyfmyf nknknkdnk   



  AF

RR
 (43) 

 

Proof. An easily combination of (14), (27), (34) and (41) shows that  

   dyfm nknknkdnk )(),())(( 2,,,,,12, 


  AF
R
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   dyyfm nknk

n

dnnkdnk )(),())((= 2,2,

2

1

1

2,12, 






  AMF
R

  

 )(= 12

1 yfy n

n

d



 M  

 ).(= yf  

 

Theorem 8 Plancherel formula: for all f  in )( 1d

nD R , we have 

 

 .)(|))((|=)(|)(| 2,

2

,,12,,

2

1
  dfmdxxxf nknkdnkkd 





 AFA
RR

 

 

Proof. By (41) we have  

 ,)(|))((|=)(|))((| 2,

21

2,12,

2

,,1
  dfdf nknnkdnknkd 









 AMFAF
RR

  

 using (28) we get  

 

dxxxfdfm nkndnknnkdnk )(|)(|=)(|))((| 2,

21

12,

21

2,12, 













    AMAMF
RR

  

 .)(|)(|= ,

2

1
dxxxf kd A

R 


 

 

Definition 10 The generalized Dunkl-Bessel translation operators xT  associated with nk ,,  are defined by  

 .= 12

1



 nxn

n

dx Tx MMT   (44) 

 

 

Remark 6 By (11) and (44) it is easily checked that  

 ),(=)( 1

',

1
' 


 d

n

d
xxx yyfTyf T  

where 
n

d
xT ,

1




 are the generalized Bessel translation operators defined by  

 .= 12

1

2

1

,

1







n

n

d
xn

n

d

n

d
x TxT MM  

 

 

 

 

Proposition 12 Let )( 12

,



 d

kLf R , 
1

 dx R  and 
1

 dR  then  

 ).)((),(=))(( ,,,,,,   fxf nknkxnk FTF   

 

Proof. Using (29), (34), (41) and (44) we get  

 )))(((=))(( 12

1

1

2,,,   fTxf nxn

n

dnnkxnk







 MMMFTF   

 )))(((= 12

1

1

2,  fTx nxn

n

dnnk







 MMMF   

 )))(((= 1

2,

2

1  fTx nxnk

n

d



 MF   

 ))((),(= 1

2,2,

2

1   fxx nnknk

n

d



  MF   

 ).)((),(= ,,,,   fx nknk F  

 

Proposition 13  

    • For all 
1, 

 dyx R  and 
1 dC , we have  
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 ).,(),(=),( ,,,,,,   yxy nknknkx T  

 

    • For )( 1 dEf R , and )( 1 dDg R , we have  

 .)()()(=)()()( ,1,1
dyyygTyfdyyygyfT kxdkxd  AA

RR  





 

 

 

Proof. An easily combination of (30), (34) and (44) shows that  

 ),(=),( ,,

12

1,,   yTxy nknxn

n

dnkx  

 MMT   

 ),(= 2,

2

1  yTx nkxn

n

d  M  

 ),(= 2,

2

1

2

1  yTyx nkx

n

d

n

d    

 ),(),(= 2,2,

2

1

2

1   yxyx nknk

n

d

n

d    

 ).,(),(= ,,,,   yx nknk   

 which proves assertion (i). 

By (14), (31) and (44) we obtain  
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n

ddkxd
)()()(=)()()( ,
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11,1  AMMAT
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
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

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n
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11 





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1
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1 









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dd
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R





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 .)()()(= ,1
dyyygyf kxd AT
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Definition 11 The convolution product associated with the generalized Dunkl-Bessel operator of two functions 

f  and g  in )( 1d

nD R  is defined on 
1



dR  by  

 ,)()()(=)( ,1,, dyyygyfxgf kxdnk  AT
R





  (45) 

 with ),(= 1

  dyyy .  

 

Proposition 14 Let f  and g  in )( 1d

nD R , we have  

  .)()(= 1

2,

1

,, gfgf nnknnnk





  MMM   (46) 

 

Proof. From (32), (44) and (45) we obtain  
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Proposition 15 Let )( 12

,,



 d

nkLf R  and ),( 11

,,



 d

nkLg R  then  

 ).()(=)( ,,,,,,,, gfgf nknknknk  FFF   (47) 

 

Proof. By (46) we have  

  )()(= 1

2,

1

,, gfgf nnknnnk





  MMM   

 using (33) and (41) we get  
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