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1. Introduction 
1.1 Efficient Market Hypothesis 

The concept of informational efficiency in financial markets, essential to economics and finance, refers 

to the speed and accuracy with which markets incorporate available information into the prices of financial 

assets. It is based on the idea that in efficient markets, asset prices reflect all relevant information at the moment, 

whether it is public or private. This concept of informational efficiency was initially formulated by Eugene 

Fama in the 1960s (Fama (1965)) in the form of the Efficient Market Hypothesis (EMH). The history of the 

Efficient Market Hypothesis (EMH) can be divided into two stages. The first stage involves the construction of 

the theory in the 1960s. In the second stage, the establishment of empirical confirmation made the theory 

consensus in the 1970s (Fama (1970).  

 

Eugene Famahas decomposed efficiency into three main forms: 

 Weak form efficiency: This form states that financial asset prices already reflect all historical data, 

making technical analysis, based on price and volume histories, ineffective for predicting future price 

movements. 

 Semi-strong form efficiency: This form asserts that financial asset prices not only reflect historical data 

but also all publicly available information, including company financial data, economic and political 

news, as well as company announcements, among others. Therefore, neither fundamental nor technical 

analysis should enable obtaining exceptional returns. 

 Strong form efficiency: This form posits that financial asset prices reflect not only all historical and 

public data but also all private information, including information accessible only to insiders. 

 

Abstract: The purpose of this paper is to test the weak form of the informational efficiency hypothesis on 

the Moroccan stock market during the period from 03/01/2002 to 15/08/2023, by examining the presence 

of dual long memory in both returns and volatility of the Casablanca Stock Exchange index (MASI). We 

initiated our study by testing the random walk hypothesis using various standard statistical tests, such as 

the normality test, stationarity tests, return autocorrelation tests, and the variance ratio test. The results of 

these tests strongly rejected the random walk hypothesis for the Moroccan stock market over the examined 

period, thus concluding that the Casablanca Stock Exchange is not an efficient market in its weak form. 

Subsequently, we tested the presence of dual long memory in both the conditional mean and 

conditional variance of the geometric returns of the MASI index by applying four joint models: ARFIMA-

FIGARCH, ARFIMA-FIEGARCH, ARFIMA-FIAPARCH, and ARFIMA-HYGARCH. Various combinations 

of the parameters for these four models were tested, and we selected the models with the most significant 

estimations. Empirical results from all these models indicated that both long memory parameters are 

statistically significant at the 1% or 5% significance level, and most of the other parameters are statistically 

significant, except occasionally 1 or 2 parameters. These findings robustly confirm that the Moroccan 

stock market is inefficient in its weak form. 

Keywords: Informational efficiency, autocorrelation test, variance test, ARFIMA, FIGARCH, 
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1.2 Importance of studying informational efficiency in financial markets 

Studying the informational efficiency of financial markets, especially in its weak form, is a fundamental 

concept with profound implications in the financial domain: 

 Efficient resource allocation: In an efficient market, the allocation of financial resources is expected to 

be more effective, enabling investors to make informed decisions. 

 Investment and portfolio management: Individual and institutional investors rely on informational 

efficiency to make informed investment decisions. In the case of market inefficiency, increased 

opportunities to generate abnormal returns may emerge, impacting portfolio management strategies. 

 Financial risk management: Informational efficiency provides investors with the opportunity to assess 

the inherent risks in their investments with increased accuracy. 

 Reduction of information asymmetry: Informational efficiency mitigates the inequality of access to 

information among various participants in financial markets. 

 Financial market stability: Mastering the concept of informational efficiency is essential for regulatory 

bodies to preserve the stability of financial markets. 

 Financial innovation: Informational efficiency can spur innovative impulses within the financial 

domain. For instance, new technologies and analytical data models can be developed to more effectively 

leverage financial information and optimize risk management. 

 Fraud prevention: Regulatory bodies use the concept of informational efficiency to identify fraudulent 

practices within financial markets. 

 

1.3 Problem statement 

In this study, we address two interconnected questions. Firstly, how can we capture long memory in the 

financial series of the Moroccan stock market index? Subsequently, the answer to this initial question 

determines the second one: Is the Moroccan stock market efficient? 

To address the first question, we applied several joint models analyzing the dual long memory property 

in both the conditional mean and conditional variance of the MASI index. We estimated four joint models: 

ARFIMA-FIGARCH, ARFIMA-FIEGARCH, ARFIMA-FIAPARCH, and ARFIMA-HYGARCH, under different 

distribution assumptions such as Normal distribution, Student's distribution, Skewed Student's distribution, and 

Generalized Error Distribution (GED). 

These joint models combine two components: the ARFIMA model (Autoregressive Fractionally 

Integrated Moving Average), which captures long-term dependencies (long memory) in the returns of the MASI 

index, and the FIGARCH (Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity), 

FIEGARCH (Fractionally Integrated Exponential GARCH), FIAPARCH (Fractionally Integrated Asymmetric 

Power ARCH), or HYGARCH (Hyperbolic GARCH) models, which capture the long-term memory of the 

conditional volatility of this index. 

The method employed to address the primary inquiry serves as a foundation for addressing the 

subsequent question related to the effectiveness of the Moroccan stock market. By examining long-term 

memory patterns in returns and volatility, it becomes possible to determine the extent to which the market 

efficiently incorporates information and responds to new data, thereby establishing the level of efficiency of the 

Moroccan stock market. 

 

2. Literature Review 
Extensive research has been undertaken worldwide to scrutinize the empirical evidence of the Efficient 

Market Hypothesis (EMH). 

Grossman and Stiglitz (1980) suggested that the key to achieving informational efficiency in the market 

lies in recognizing that a higher number of well-informed investors leads to a more informative price system. 

The balance between well-informed and poorly informed individuals in the economy depends on various 

constraints such as the cost, quality, availability, and timing of information. Similarly, Fama (1991) argued that 

lower transaction costs in a market make it more efficient. 

To assess the weak form of market efficiency or the random walk hypothesis, various statistical tools 

have been employed, including serial correlation, runs test, variance ratio test, multiple variance ratio test, 

spectral analysis, unit root tests, ARMA, ARIMA, ARCH, and GARCH models. 

Extensive research has been conducted worldwide to collect empirical evidence of EMH. Most studies on 

stock markets in developed countries such as France, the United States, Japan, and the United Kingdom appear 
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to validate the weak form efficiency hypothesis. In contrast, test results on markets in emerging and frontier 

countries have generally led to the rejection of the random walk hypothesis. 

In this study, our focus is on the Moroccan stock market, characterized as a frontier (pre-emergent) 

market due to its low market capitalization and limited liquidity. Frontier markets hold a special interest as they 

offer a greater potential for growth compared to developed markets. 

In this literature review, we will first discuss some research on the efficiency hypothesis in stock markets 

of developed, emerging, and frontier countries that used simple statistical methods to test the random walk of 

returns in these markets. Next, we will review studies relevant to our research that have investigated the 

utilization of techniques designed to capture the prolonged influence of returns and volatilities. 

 

Studies testing the Random Walk Hypothesis 

Several studies have been conducted to test the random walk hypothesis in the stock markets of Europe 

and the Americas. One notable study by Urrutia (1995) utilized the runs test and the variance ratio test to 

examine the random walk hypothesis on the monthly returns of Latin American emerging markets indices from 

December 1975 to March 1991. The runs test indicated efficiency in the Latin American stock markets under 

the weak form, while the variance ratio test rejected the random walk hypothesis. 

Similarly, Borges (2010) conducted a study to test the weak form of EMH for stock indices in the United 

Kingdom, France, Germany, Spain, Greece, and Portugal. Using a combination of simulation tests and the joint 

variance ratio test with daily and weekly data from 1993 to 2007, the study presented nuanced conclusions. It 

refuted EMH for daily data in Portugal and Greece due to positive first-order autocorrelation in returns. Weekly 

data for France and the UK also rejected EMH due to mean reversion. However, tests for Germany and Spain 

did not refute EMH. 

In another study focusing on European stock markets, Dutta (2015) employed the runs test, variance ratio 

test, and unit root tests (Dickey-Fuller augmented and Phillips-Perron) to investigate weak form efficiency in 

France, Germany, Italy, and the UK. The tests were applied to monthly price index data from 1998 to 2014. The 

empirical results suggested that sampled European stock markets did not follow a random walk, indicating weak 

form inefficiency. 

To summarize, there is still no consensus in the existing literature on the efficiency or inefficiency of 

European and American stock markets.  

As for studies on the weak form efficiency of emerging and frontier stock markets, Mollah (2007) tested 

the weak form efficiency of the Botswana Stock Exchange from 1989 to 2005, using daily return series and 

applying the runs test, autocorrelation test, and ARIMA model. Empirical evidence from the tests rejected the 

random walk hypothesis, concluding that the Botswana Stock Exchange is not weak-form efficient. 

Al-Jafari and Altaee (2011) examined the efficiency of the Egyptian stock market using various 

statistical tests. They analyzed the daily prices of the EGX 30 index from January 1998 to December 2010. 

Empirical results contradicted the random walk hypothesis and weak efficiency of the Egyptian stock market. 

Büyükşalvarcı and Abdioğlu (2011) conducted a study to evaluate the weak form efficiency of the 

Istanbul Stock Exchange (ISE) in Turkey. Analyzing daily data from various ISE indices from October 23, 

1987, to July 15, 2011, they applied parametric tests like the augmented Dickey Fuller unit root test, serial 

autocorrelation test, and variance ratio test, as well as non-parametric tests including the Phillips-Perron unit 

root test and the runs test. Except for the runs test results for service and technology indices, the runs test, 

autocorrelation test, and variance ratio test results rejected the random walk hypothesis for the Turkish stock 

market. 

Gimba (2012) tested the weak form efficiency of the Nigerian Stock Exchange (NSE). Analyzing daily 

and weekly data for the Nigerian stock index and the five most traded and oldest bank stocks from January 2007 

to December 2009, empirical results from autocorrelation tests convincingly rejected the null hypothesis of a 

random walk for the stock index and four of the five bank stocks studied. Overall, the author firmly established 

the inefficiency of the NSE under weak form efficiency. 

Similarly, McKerrow (2013) analyzed random walk models in the emerging stock markets of Botswana, 

Côte d'Ivoire, Ghana, Mauritius, and Namibia. Using monthly series data covering about 16 years, employing 

the random walk method, and conducting the runs test and multiple variance ratio test, the study's conclusions 

were mixed. The runs test indicated rejection of the random walk hypothesis for Namibia and Côte d'Ivoire 

markets but acceptance for Botswana, Ghana, and Mauritius markets. 

https://www.researchgate.net/profile/Ahmet-Bueyueksalvarci?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Hasan-Abdioglu?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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Jaihan and Syed (2013).  (2013) tested the weak form of the efficient market hypothesis on the Karachi 

Stock Exchange (KSE) using daily data from 2006 to 2011. Three tests, namely the augmented Dickey-Fuller 

unit root test, runs test, and autocorrelation test, were applied to the data. The study revealed that the KSE is 

weakly inefficient and non-random. 

Phan and Zhou (2014) conducted an investigation to test the weak form efficiency hypothesis in the 

Vietnamese stock market. Employing three distinct statistical methods-autocorrelation test, variance ratio test, 

and runs test—on weekly returns from July 28, 2000, to July 28, 2013, the study provided strong evidence 

against the random walk hypothesis over the examined period. 

Chiny and Mir (2015) conducted an in-depth study on the weak efficiency of the Moroccan stock market. 

They subjected the daily returns of four stock indices - the Casablanca Stock Exchange index (MASI), the 

banking sector index (BNQ), the insurance sector index (ASSUR), and the real estate sector index (IMMO) - to 

autocorrelation testing, unit root testing, variance ratio testing, and Runs testing. This analysis covered the 

period from January 1, 2002, to December 31, 2013. The results obtained from these various tests unequivocally 

rejected the weak form efficiency hypothesis for the four markets. 

 

Studies testing the presence of long memory 

Several studies have investigated informational efficiency by examining the long memory of stock 

market indices using models such as ARFIMA and FIGARCH. 

Among these studies, we mention the works of Lamouchi (2020), Falloul (2020), and Ziky and Ouali 

(2021), who attempted to capture long memory in the return series of the stock index using the ARFIMA model.  

Lamouchi (2020) applied the ARFIMA model to the Tadawul index of the Saudi stock market to capture 

the long memory of daily returns from 1998 to 2020. The results show that the Saudi stock market exhibits long-

term memory, contradicting the Efficient Market Hypothesis (EMH). 

A similar study was conducted by Falloul (2020) to test the weak form of the efficiency hypothesis of the 

Moroccan stock market, applying the ARFIMA model to the daily returns of the MASI index. The study 

revealed that the Moroccan stock market exhibits long memory, rejecting the efficiency hypothesis of this 

market. 

Similarly, Ziky and Ouali (2021) tested the efficiency of the Moroccan stock market in its weak form 

using the ARFIMA model to capture long memory in the daily return series of the MASI index from 1992 to 

2016. The results indicate that the Moroccan stock market is characterized by long memory and can be 

considered inefficient. 

Other researchers have attempted to capture long memory in the volatility of stock market indices using 

the FIGARCH model family. Among these researchers, Chaker A. (2003) examined the long memory property 

in the volatility of the Tunisian stock market through daily data for two indices, IBVMT and TUNINDEX, from 

1998 to 2004, applying the FIGARCH model. This study demonstrated that the volatility of the Tunisian stock 

market exhibits long memory, which is inconsistent with the market efficiency hypothesis. 

Similarly, Maheshchandra (2014) examined the existence of long memory in the volatility of daily 

returns of stock market indices in India (BSE) and China (SSE) from January 1, 2009, to June 24, 2014, using 

the FIGARCH model. The results indicate strong evidence of long-term memory in the conditional variance of 

stock market indices. The long-term memory property of the BSE Indian stock market is revealed to be stronger 

than that of the Chinese SSE stock market. 

Alfred and Sivarajasingham (2020) tested the efficiency hypothesis of the daily return series of the Sri 

Lankan stock index from January 2, 1985, to September 28, 2018. They applied the ARFIMA model to capture 

long memory in return series and the FIGARCH model to capture long memory in the conditional volatility of 

the Sri Lankan index. The results show that the return series does not have long memory, while the volatility 

series exhibits long memory. 

Another category of studies has examined the presence of long memory in both stock index returns and 

their conditional volatilities, applying separately the ARFIMA and FIGARCH (or FIEARCH) models. 

Among these studies, we cite Kang and Yoon (2006), who examined the presence of long memory in the 

returns of indices from four Asian stock markets - Japan, South Korea, Hong Kong, and Singapore - applying 

the ARFIMA model, and analyzed the existence of long-term memory in the conditional variances of these four 

indices, applying the FIEGARCH model. The results of the ARFIMA model revealed no evidence of long 

memory in the returns of the four indices, while the results of the FIEGARCH model detected long memory in 

the volatilities of the four indices. 



 

 International 

   Journal 
Of Advanced Research in Engineering & Management (IJAREM) 

ISSN: 2456-2033 || PP. 15-31 

 

 
| Vol. 10 | Issue 02 | 2024 | 19 | 

In a similar study, Nazarian et al. (2014) applied the ARFIMA model to capture long-term memory in the 

returns of the Tehran Stock Exchange (TSE) index and the FIGARCH model to detect long memory in the 

conditional variance (volatility) of the TSE index. The results of the ARFIMA model indicate the absence of 

long memory in the return series of the TSE index, while the results of the FIGARCH model show evidence of 

long memory in the conditional variance of this series. 

Finally, a last category of studies simultaneously analyzed the presence of long memory in both stock 

index returns and volatilities, applying the joint ARFIMA-FIGARCH model. 

Among these studies, we mention the study of Turkyilmaz and Balibey (2014), who examined the weak 

form efficiency of the Karachi stock market in Pakistan for the period 2010-2013, applying the ARFIMA-

FIGARCH model. According to the results of the study, the ARFIMA component of the model does not support 

long-term memory behavior for the returns of the Karachi market, while the FIGARCH component of the model 

indicates that the volatility of the market's returns exhibits long memory. 

A similar study was conducted by Mahboob et al. (2017) to explore the presence of long memory in the 

daily returns and volatilities of the Dhaka Stock Exchange index in Bangladesh over the period from December 

15, 2003, to July 31, 2013, applying both ARFIMA-FIGARCH and ARFIMA-FIPARCH models. The test 

results clearly indicate the existence of long memory in both returns and volatilities in the Dhaka stock market. 

Another study by Houfi (2019) aimed to test the weak form of informational efficiency of the Tunisian 

stock exchange. The author examined the behavior of long memory in the series of daily returns and volatility of 

the Tunisian stock index, applying the ARIMA-FIGARCH model. The empirical study covered a sample period 

from January 2, 1998, to March 16, 2018. The results showed the presence of long memory in both the returns 

and volatility of the Tunisian stock market. 

In a similar context, Bouchareb et al. (2021) applied the ARFIMA-FIGARCH model to capture long 

memory in both returns and volatilities of four Mediterranean stock markets, namely Morocco, Turkey, Spain, 

and France, over the period 2000-2020. The results provide strong evidence of long memory in both returns and 

volatilities for the Moroccan and French stock markets, and only in volatility for the Spanish and Turkish 

markets, thus rejecting the efficiency hypothesis of these markets. 

The presence of long memory was also explored by Odonkor et al. (2022) in the daily returns and 

volatilities of seven stocks from the Ghana Stock Exchange using the ARFIMA-FIGARCH model. In this study, 

the authors found that all seven stocks exhibit long memory in both returns and volatility, contradicting the 

efficiency hypothesis of the Ghanaian stock market. 

 

4. Data and Methodology 

4.1 Data 

The data utilized in this study consists of the daily closing prices of the Casablanca Stock Exchange 

index (MASI), spanning from 03/01/2002 to 15/08/2023, comprising a total of 5393 observations. 

Subsequently, the MASI index prices were transformed into geometric returns: 

𝑟𝑡 = 𝑙𝑛  
𝑃𝑡

𝑃𝑡−1

 = 𝑙𝑛 𝑃𝑡 − 𝑙𝑛 𝑃𝑡−1  (1) 

where 𝑃𝑡  represents the index price, and 𝑙𝑛 corresponds to the natural logarithm. The covered period is between 

03/01/2002 and 11/08/2023, resulting in 5392 geometric returns. 

The data was downloaded from the website www.investing.com. 

 
4.2 Methodology 

In this section, we describe the joint models based on the ARFIMA model capturing the long memory of 

returns, and on the FIGARCH, FIEGARCH, FIPARCH, orHYGARCH models capturing the long memory of 

volatility. 

 

Definition of the 𝐀𝐑𝐌𝐀(𝐩 , 𝐪 ) model: AutoRegressive Mobile Average 

Let  𝑋𝑡   be a stationary stochastic process. We say that  𝑋𝑡   is an 𝐴𝑅𝑀𝐴 𝑝 , 𝑞   process of orders 𝑝 and 𝑞 if 

there exist lag polynomials 𝜙 𝐿  of order 𝑝   and 𝜓 𝐿  of order 𝑞  whose roots are all outside the unit circle, and 

a white noise  𝜀𝑡   such that: 

𝜙 𝐿 𝑋𝑡 = 𝑐 + 𝜓 𝐿 𝜀𝑡  (2) 

where 𝐿 is the lag operator, and 𝜙 and 𝜓 are lag polynomials defined by: 
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𝜙 𝐿 = 1 −  𝜙𝑖𝐿
𝑖𝑝 

𝑖=1     avec 𝜙𝑝 ≠ 0 𝜓 𝐿 = 1 +  𝜓𝑗𝐿
𝑗𝑞 

𝑗=1     avec 𝜓𝑞 ≠ 0 (3) 

The 𝐴𝑅𝑀𝐴 𝑝 , 𝑞    process can also be expressed as: 

𝑋𝑡 = 𝑐 +  𝜙𝑖

𝑝 

𝑖=1

𝑋𝑡−𝑖 +  𝜓𝑗

𝑞 

𝑗 =0

𝜀𝑡−𝑗 + 𝜀𝑡  (4) 

 

Definition of the 𝐀𝐑𝐈𝐌𝐀(𝐩 , 𝐝, 𝐪 ) model: AutoRegressive Integrated Moving Average 

Let  𝑋𝑡   be a non-stationary integrated stochastic process of order 𝑑 ∈ ℕ∗. We say that  𝑋𝑡  is an 

𝐴𝑅𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   process of orders 𝑝 , 𝑑 and 𝑞  if there exist lag polynomials 𝜙 𝐿  of order 𝑝   and 𝜓 𝐿  of order 

𝑞 , with roots all outside the unit circle, and a white noise  𝜀𝑡  such that: 

𝜙 𝐿  1 − 𝐿 𝑑𝑋𝑡 = 𝑐 + 𝜓 𝐿 𝜀𝑡  (5) 

where 𝐿 is the lag operator, and 𝜙 and 𝜓 are defined as previously. 

 

Definition of the 𝐀𝐑𝐅𝐈𝐌𝐀 𝐩 , 𝐝, 𝐪  model: AutoRegressive Fractionally Integrated Mobile Average 

We say that  𝑋𝑡   is an 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   process of orders 𝑝 , 𝑑 ∈ ℚ and𝑞  if there exist lag polynomials 𝜙 𝐿  of 

order 𝑝 , 𝜓 𝐿  of order 𝑞  with all roots outside the unit circle, and white noise 𝜀𝑡  such that: 

𝜙 𝐿  1 − 𝐿 𝑑𝑋𝑡 = 𝑐 + 𝜓 𝐿 𝜀𝑡  (6) 

where 𝐿 is the lag operator, and 𝜙 and 𝜓 are defined as previously: 

The filter  1 − 𝐿 𝑑  can be expressed in the form: 

 1 − 𝐿 𝑑 =   −1 𝑗  
𝑑
𝑗
 𝐿𝑗

∞

𝑗 =0

=  
Γ 𝑗 − 𝑑 

Γ −𝑑 Γ 𝑗 + 1 
𝐿𝑗

∞

𝑗 =0

 (7) 

where  
𝑑
𝑗
   is the binomial coefficient, and Γ .  is the gamma function. 

 

Properties of an 𝐀𝐑𝐅𝐈𝐌𝐀 𝐩 , 𝐝, 𝐪   process: 

Let  𝑋𝑡 be an 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   process. Then: 

- If −1/2 < 𝑑 <  1/2, the𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   process is stationary with an autocorrelation function 𝜌 𝑘  that 

decreases hyperbolically: 

𝜌 𝑘 ~𝐶. 𝑘2𝑑−1 

- If 0 < 𝑑 <  1 /2, and if all the roots of 𝜙 𝐿 =  0 are outside the unit circle, then the 

𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞  process is stationary with long memory. Autocorrelations are positive and decrease 

hyperbolically towards zero as the lag increases. 

- If −1 /2 < 𝑑 < 0, the 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞  process is stationary and anti-persistent (intermediate persistence). 

Autocorrelations decrease hyperbolically towards zero, and the spectral density is dominated by high-frequency 

components (it tends to zero as frequency tends to zero). 

- If 𝑑 ≥ 1/2, then the 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   process is non-stationary. 

- If 𝑑 =  0, the 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   process reduces to the standard 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑞  process with short memory 

(where the effect of a random shock fades exponentially over time). 

- If 𝑑 =  1, we obtain the 𝐴𝑅𝐼𝑀𝐴(𝑝 , 1, 𝑞 ) process. 

 

Definition of the 𝐀𝐑𝐂𝐇 𝐪  model: Autoregressive Conditional Heteroskedasticity 

The 𝐴𝑅𝐶𝐻 model was proposed by Engle (1982) in the early 1980s to estimate the conditional mean and 

conditional variance of the UK macroeconomic quarterly inflation series between 1958 and 1977. The 𝐴𝑅𝐶𝐻 

model was introduced to capture time-varying volatility known as heteroskedasticity. 

Let  𝑋𝑡  be a stationary process. Let ℑ𝑡−1 be the set of past information containing the realized values of all 

relevant variables up to date 𝑡 − 1. We define: 

𝐸 𝑋𝑡 ℑ𝑡−1  = 𝜇𝑡  𝑉𝑎𝑟 𝑋𝑡 ℑ𝑡−1  = 𝜍𝑡
2 (8) 

It is said that  𝑋𝑡  is an 𝐴𝑅𝑀𝐴(𝑝 , 𝑞 ) process with 𝐴𝑅𝐶𝐻(𝑞)  errors if the following conditions are met: 

1)  𝑋𝑡  is an 𝐴𝑅𝑀𝐴(𝑝 , 𝑞 )  process written in the form: 

𝑋𝑡 = 𝑐 +  𝜓𝑡−𝑖

𝑝 

𝑖=1

. 𝑋𝑡−𝑖 +  𝜙𝑡−𝑗

𝑞 

𝑗 =1

. 𝜀𝑡−𝑗 + 𝜀𝑡  (9) 
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where 𝑐 is a constant, 𝜓𝑖  and 𝜙𝑗  are the parameters of the 𝐴𝑅𝑀𝐴(𝑝 , 𝑞 )  model, and 𝜀𝑡 is the error following an 

i.i.d. process satisfying: 

𝐸 𝜀𝑡 = 0 𝑉𝑎𝑟 𝜀𝑡 = 𝜍2 𝑐𝑜𝑣 𝜀𝑡 , 𝜀𝑠 = 0for𝑡 ≠ 𝑠 (10) 

2) The error 𝜀𝑡  satisfies: 

𝐸 𝜀𝑡 ℑ𝑡−1  = 0 𝑉𝑎𝑟 𝜀𝑡 ℑ𝑡−1  = ℎ𝑡
2 𝜀𝑡 = ℎ𝑡 . 𝑍𝑡  (11) 

with ℎ𝑡 > 0   and 𝑍𝑡  a white noise such that 𝑍𝑡 ↝ 𝒩 0,1  and 𝑍𝑡  independent of 𝜍𝑡 . 

3) The error 𝜀𝑡  follows an 𝐴𝑅𝐶𝐻(𝑞) process that can be expressed as: 

ℎ𝑡
2 = 𝜔 +  𝛼𝑖

𝑞

𝑖=1

. 𝜀𝑡−𝑖
2  (12) 

with 𝜔 being a constant, the coefficients 𝛼𝑖  are the 𝐴𝑅𝐶𝐻 terms assumed to satisfy 𝜔 > 0  and 𝛼𝑖 ≥ 0  for 

𝑖 ≥ 1  to ensure the positivity of the conditional variance ℎ𝑡
2. From this definition, we can deduce the 

relationships: 

𝜇𝑡 = 𝐸 𝑋𝑡 ℑ𝑡−1  = 𝜓0 +  𝜓𝑡−𝑖

𝑝 

𝑖=1

. 𝑋𝑡−𝑖 +  𝜙𝑡−𝑗

𝑞 

𝑗 =1

. 𝜀𝑡−𝑗  (13) 

 

𝜍𝑡
2 = 𝑉𝑎𝑟 𝑋𝑡 ℑ𝑡−1  = 𝑉𝑎𝑟 𝜀𝑡 ℑ𝑡−1  = ℎ𝑡

2 (14) 

 

𝑋𝑡 = 𝜇𝑡 + 𝜀𝑡  (15) 

 

Definition of the 𝐆𝐀𝐑𝐂𝐇 𝐩, 𝐪 model: Generalized Autoregressive Conditional Heteroskedasticity 

Let  𝑋𝑡   be a stationary process with 𝐸 𝑋𝑡 ℑ𝑡−1  = 𝜇𝑡   and 𝑉𝑎𝑟 𝑋𝑡 ℑ𝑡−1  = 𝜍𝑡
2. We say that  𝑋𝑡  is an 

𝐴𝑅𝑀𝐴(𝑝 , 𝑞 ) process with 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞 errors if: 

1)  𝑋𝑡   is an 𝐴𝑅𝑀𝐴(𝑝 , 𝑞 ) process satisfying: 

𝑋𝑡 = 𝑐 +  𝜓𝑡−𝑖

𝑝 

𝑖=1

. 𝑋𝑡−𝑖 +  𝜙𝑡−𝑗

𝑞 

𝑗 =1

. 𝜀𝑡−𝑗 + 𝜀𝑡  (16) 

where 𝑐 is a constant, 𝜓𝑖  and 𝜙𝑗  are the parameters of the 𝐴𝑅𝑀𝐴(𝑝 , 𝑞 )  model, and 𝜀𝑡  is the error that follows an 

i.i.d. process satisfying: 

𝐸 𝜀𝑡 = 0 𝑉𝑎𝑟 𝜀𝑡 = 𝜍2 𝑐𝑜𝑣 𝜀𝑡 , 𝜀𝑠 = 0for𝑡 ≠ 𝑠 (17) 

2) The error 𝜀𝑡  satisfies: 

𝐸 𝜀𝑡 ℑ𝑡−1  = 0 𝑉𝑎𝑟 𝜀𝑡 ℑ𝑡−1  = ℎ𝑡
2 𝜀𝑡 = ℎ𝑡 . 𝑍𝑡  (18) 

with ℎ𝑡 > 0   and 𝑍𝑡  a white noise such that 𝑍𝑡 ↝ 𝒩 0,1  and 𝑍𝑡  independent of 𝜍𝑡 . 

3) The error 𝜀𝑡  follows a 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process written in the form: 

ℎ𝑡
2 = 𝜔 +  𝛼𝑖

𝑞

𝑖=1

. 𝜀𝑡−𝑖
2 +  𝛽𝑗

𝑝

𝑗=1

. ℎ𝑡−𝑗
2  

where 𝜔 is a constant, the coefficients 𝛼𝑖   are the 𝐴𝑅𝐶𝐻 terms, and the coefficients 𝛽𝑗 are the 𝐺𝐴𝑅𝐶𝐻 terms, 

assumed to satisfy 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0  for 𝑖 ≥ 1  and 𝑗 ≥ 1   to ensure the positivity of the conditional 

variance ℎ𝑡
2. From this definition, we can deduce: 

𝜇𝑡 = 𝐸 𝑋𝑡 ℑ𝑡−1  = 𝜓0 +  𝜓𝑡−𝑖

𝑝 

𝑖=1

. 𝑋𝑡−𝑖 +  𝜙𝑡−𝑗

𝑞 

𝑗 =1

. 𝜀𝑡−𝑗  (19) 

 
Definition of the 𝐈𝐆𝐀𝐑𝐂𝐇 𝐩, 𝐝, 𝐪  Model: Integrated Generalized Autoregressive Conditional 

Heteroskedasticity 

The 𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑞  process can be expressed as an 𝐴𝑅𝑀𝐴 process for the square of the error 𝜀𝑡
2: 

𝜀𝑡
2 = 𝜔 +   𝛼𝑘 + 𝛽𝑘 𝜀𝑡−𝑖

2

𝑟

𝑘=1

+ 𝜂𝑡 −  𝛽𝑗

𝑝

𝑗 =1

. 𝜂𝑡−𝑗  

 

(20) 

 

with 𝛼𝑘 = 0 if 𝑘 > 𝑞 and 𝛽𝑘 = 0 if 𝑘 > 𝑝 and 𝑟 = 𝑚𝑎𝑥 𝑝, 𝑞  : 

𝜂𝑡 = 𝜀𝑡
2 − ℎ𝑡

2 (21) 
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Let's note that ℎ𝑡
2 is the forecast of 𝜀𝑡

2 based on its own lagged values: 

𝑉𝑎𝑟 𝜀𝑡 ℑ𝑡−1  = ℎ𝑡
2 = 𝐸 𝜀𝑡

2/ℑ𝑡−1 −  𝐸 𝜀𝑡/ℑ𝑡−1  
2

= 𝐸 𝜀𝑡
2/ℑ𝑡−1  

Therefore, 𝜂𝑡 = 𝜀𝑡
2 − ℎ𝑡

2 is the error associated with this forecast. It can be deduced that 𝜂𝑡  is white 

noise. According to equation (20), we can say that 𝜀𝑡
2 is an 𝐴𝑅𝑀𝐴(𝑟, 𝑝) process with the lag polynomial 

Φ 𝐿 = 1 −   𝛼𝑘 + 𝛽𝑘 . 𝐿𝑘 = 1 −  𝛼𝑖 . 𝐿
𝑖 −  𝛽𝑗 . 𝐿𝑗𝑝

𝑗 =1
𝑞
𝑖=1

𝑟
𝑘=1  and the moving average polynomial Ψ 𝐿 =

1 −  𝛽𝑗 . 𝐿𝑗𝑝
𝑗 =1 , which can be written as: 

Φ 𝐿 = 1 − 𝛼 𝐿 − 𝛽 𝐿  Ψ 𝐿 = 1 − 𝛽 𝐿  (22) 

where 

𝛼 𝐿 =  𝛼𝑖 . 𝐿
𝑖

𝑞

𝑖=1

 𝛽 𝐿 =  𝛽𝑗 . 𝐿𝑗

𝑝

𝑗 =1

 (23) 

The equation (20) can be written as follows: 

 1 − 𝛼 𝐿 − 𝛽 𝐿  𝜀𝑡
2 = 𝜔 +  1 − 𝛽 𝐿  𝜂𝑡  (24) 

The sufficient condition for the positivity of 𝜀𝑡
2 is 𝜔 > 0, 𝛼𝑘 ≥ 0, and 𝛽𝑘 ≥ 0  for 1 ≤ 𝑘 ≤ 𝑟. The 

process is covariance stationary if the lag polynomial Θ 𝐿  has all its roots outside the unit circle, which is 

equivalent to the condition: 

  𝛼𝑘 + 𝛽𝑘 

𝑟

𝑘=1

< 1 

The lag polynomial Θ 𝐿  of the process 𝜀𝑡
2 could have a unit root, which is expressed by the condition: 

  𝛼𝑘 + 𝛽𝑘 

𝑟

𝑘=1

=  𝛼𝑖

𝑞

𝑖=1

+  𝛽𝑗

𝑝

𝑗=1

= 1 (25) 

Engle and Bollerslev (1986) referred to a model satisfying (25) as an integrated 𝐺𝐴𝑅𝐶𝐻 process, denoted 

𝐼𝐺𝐴𝑅𝐶𝐻. The 𝐼𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑞  process of integration order 𝑑 = 1  is defined by: 

Φ 𝐿  1 − 𝐿 𝜀𝑡
2 = 𝜔 + Ψ 𝐿 𝜂𝑡  (26) 

where the polynomials Φ 𝐿  and Ψ 𝐿  have all their roots outside the unit circle. 

 

Definition of the 𝐅𝐈𝐆𝐀𝐑𝐂𝐇 𝐩, 𝐝, 𝐪  model (Baillie et al. BBM method): Fractionally Integrated 

Autoregressive Conditional Heteroscedasticity 

A key characteristic of 𝐼𝐺𝐴𝑅𝐶𝐻 models is that the impact of past squared shocks 𝜂𝑡−𝑗 = 𝜀𝑡−𝑗
2 − ℎ𝑡−𝑗

2  for 𝑗 > 0  

on 𝜀𝑡
2  is persistent. Using a parallel with 𝐴𝑅𝑀𝐴 and 𝐴𝑅𝐹𝐼𝑀𝐴 processes, Baillie et al. (1996) extended the 

IGARCH process by allowing the integration parameter to belong to the interval  0,1 . They thus defined the 

𝐹𝐼𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞   (BBM) process: 

Φ 𝐿  1 − 𝐿 𝑑𝜀𝑡
2 = 𝜔 +  1 − 𝛽 𝐿  𝜂𝑡  (27) 

where the polynomials 𝜙 𝐿 =  𝜙𝑖 . 𝐿
𝑖𝑞

𝑖=1  and 1 − 𝛽 𝐿 = 1 −  𝛽𝑗 . 𝐿𝑗𝑞
𝑗=1  have all their roots outside the unit 

circle. From the (27) model, we can deduce the equation for conditional volatility ℎ𝑡
2: 

ℎ𝑡
2 = 𝜔 1 − 𝛽 𝐿  

−1
+  1 −  1 − 𝛽 𝐿  

−1
Φ 𝐿  1 − 𝐿 𝑑  𝜀𝑡

2 (28) 

The model parameters can be estimated either through the Baillie et al. (1996) (BBM) approach or the 

Chung (1999) approach. 

 

Definition of the 𝐅𝐈𝐄𝐆𝐀𝐑𝐂𝐇 𝐩, 𝐝, 𝐪 model: Fractionally Integrated Exponential GARCH 

To capture the asymmetry phenomenon, Bollerslev and Mikkelsen (1996) proposed the Fractionally Integrated 

Exponential 𝐺𝐴𝑅𝐶𝐻 (𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻) process described by: 

𝑙𝑛 ℎ𝑡
2 = 𝜔 + Φ 𝐿 −1 1 − 𝐿 −𝑑 1 + 𝛼 𝐿  𝑔 𝑧𝑡  (29) 

where  𝑑 ∈  0,1  and 

𝑔 𝑧𝑡 = 𝜃1𝑧𝑡 + 𝜃2  𝑧𝑡  − 𝐸  𝑧𝑡     𝑧𝑡 = 𝜀𝑡 ℎ𝑡  𝐸  𝜀𝑡 ℎ𝑡   =  2 𝜋  (30) 

In this model, the parameters 𝜃1 and 𝜃2 represent, respectively, the impact of the sign and the effect of 

the magnitude. More precisely, good news has an impact of  𝜃1 + 𝜃2  on volatility, while bad news has an 

impact of  𝜃1 − 𝜃2  on volatility. For 𝜃1 > 0  and 𝜃2 > 0, positive shocks will have a greater influence on 



 

 International 

   Journal 
Of Advanced Research in Engineering & Management (IJAREM) 

ISSN: 2456-2033 || PP. 15-31 

 

 
| Vol. 10 | Issue 02 | 2024 | 23 | 

volatility than negative shocks; for 𝜃1 < 0   and 𝜃2 > 0, negative shocks result in larger volatility changes than 

positive shocks. 

 

Definition of the 𝐅𝐈𝐀𝐏𝐀𝐑𝐂𝐇 𝐩, 𝐝, 𝐪  model: Fractionally Integrated Asymmetric Power ARCH 

Tse(1998) proposed the 𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model, which incorporates the asymmetric power 𝐴𝑅𝐶𝐻 of Ding 

et al. (1993). The 𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model is defined by: 

ℎ𝑡
𝛿 = 𝜔 +  1 −  1 − 𝛽 𝐿  

−1
Φ 𝐿  1 − 𝐿 𝑑    𝜀𝑡  − 𝛾𝜀𝑡 

𝛿  (31) 

where 𝑑 ∈  0,1 , 𝛿 > 0, and −1 < 𝛾 < 1. 

The parameter 𝛾 represents the asymmetric component of the model, and when 𝛾 > 0, negative shocks 

have a greater impact on volatility than positive shocks, and vice versa. The conditional variance exhibits long-

memory properties if 0 < 𝛿 < 1. The 𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model is retrieved when 𝛿 = 2 and 𝛾 = 0. The 

parameters of the 𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model can be estimated using either the approach of Baillie et al. (BBM) 

or the approach of Chung. 
 

Definition of the 𝐇𝐘𝐆𝐀𝐑𝐂𝐇 𝐩, 𝐝, 𝐪  model: Hyperbolic GARCH 

Davidson (2004) proposed a hyperbolic 𝐺𝐴𝑅𝐶𝐻 (HYGARCH) model to overcome a limitation of the 

𝐹𝐼𝐺𝐴𝑅𝐶𝐻 process (infinite variance). The 𝐻𝑌𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model is expressed as follows: 

Φ 𝐿   1 − 𝛼 + 𝛼 1 − 𝐿 𝑑 𝜀𝑡
2 = 𝜔 +  1 − 𝛽 𝐿  𝜂𝑡  (32) 

where 𝑑 ∈  0,1 ; 𝛼 ≥ 0; 𝜙 𝐿 , 𝛽 𝐿 , and 𝜂𝑡  are defined as previously. 

From the model (32), we can deduce the equation for conditional volatility. 

ℎ𝑡
2 = 𝜔 +  1 −  1 − 𝛽 𝐿  

−1
Φ 𝐿   1 − 𝛼 + 𝛼 1 − 𝐿 𝑑  𝜀𝑡

2 (33) 

The 𝐻𝑌𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model reduces to the 𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑞  model when 𝛼 = 0  (⟺ 𝑙𝑛 𝛼 < 0  or 

𝑑 = 0)  and reduces to the 𝐹𝐼𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model when 𝛼 = 1 (⟺ 𝑙𝑛 𝛼 = 0). If 𝑑 = 1, then the 

𝐻𝑌𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑, 𝑞  model reduces either to a stationary 𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑞  ( 𝛼 < 1 ⟺ 𝑙𝑛 𝛼 < 0), to an 

𝐼𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑞  (𝛼 = 1 ⟺ 𝑙𝑛 𝛼 = 0), or to a 𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑞  (𝛼 > 1 ⟺ 𝑙𝑛 𝛼 > 0) with explosive conditional 

variances. The process is stationary if 0 < 𝛼 < 1  and non-stationary if 𝛼 > 1. 

 

Joint Models: 

In joint models,  𝑋𝑡   follows an 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑𝐴𝑅𝐹𝐼𝑀𝐴 , 𝑞   process of orders 𝑝  , 𝑑𝐴𝑅𝐹𝐼𝑀𝐴 ∈ ℚ, and 𝑞 such that: 

𝜙 𝐿  1 − 𝐿 𝑑𝐴𝑅𝐹𝐼𝑀𝐴 𝑋𝑡 = 𝑐 + 𝜓 𝐿 𝜀𝑡  (34) 

with 𝜙 𝐿  and 𝜓 𝐿  being lag polynomials of orders 𝑝  and 𝑞 , respectively, with all roots outside the unit circle, 

and  𝜀𝑡  being white noise.  

As for the error 𝜀𝑡  of the 𝐴𝑅𝐹𝐼𝑀𝐴 𝑝 , 𝑑, 𝑞   model, it follows the 

𝐹𝐼𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑𝐹𝐼𝐺𝐴𝑅𝐶𝐻 , 𝑞 , 𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻 , 𝑞 , 𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻 𝑝, 𝑑𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻 , 𝑞 , or 

𝐻𝑌𝐺𝐴𝑅𝐶𝐻 𝑝, 𝑑𝐻𝑌𝐺𝐴𝑅𝐶𝐻 , 𝑞  processes. 
 

5. Results and discussion 
Before testing the presence of long memory in the financial series of the Moroccan stock index, we will 

examine the hypothesis of a random walk using standard statistical tests such as the normality test, stationarity 

tests, autocorrelation tests of returns, and the variance ratio test. 

We start by graphically representing the series of daily geometric returns of the MASI index (denoted as 

MASI-GReturns) during the period from 03/01/2002 to 11/08/2023. 
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Figure 1: Daily geometric returns of the MASI Index 

 

The figure below depicts the histogram and descriptive statistics of the geometric returns of the MASI 

index during the period from 03/01/2002 to 11/08/2023. 
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Figure 2: Histogram and descriptive statistics of geometric returns of the MASI Index 

 
We notice that the average and median returns are positive during the study period. Returns exhibit a 

negatively skewed coefficient (skewness) different from 0. The kurtosis coefficient is high, exceeding three. 

Negative skewness and high kurtosis indicate a significant deviation from normality in the unconditional 

distribution of returns. The Jarque-Bera statistic rejects the hypothesis of a normal distribution of returns at a 

significance level of 1%.We can thus reject the null hypothesis of normality in the level series for MASI index 

returns.  

The table below presents the autocorrelation and partial correlation functions of MASI index returns with 

a lag of 16. 

Table 1: Autocorrelations and partial correlations of MASI index returns 

 
 

The results shown in table 1 indicate that the returns of the MASI index exhibit significant autocorrelation 

throughout the study period. Indeed, the probability values corresponding to the Q-stat (LB) statistic are below 

the 1% significance threshold. This implies that the returns of the MASI index show serial dependence. 

Date: 11/07/23   Time: 13:18

Sample: 1/03/2002 8/11/2023

Included observations: 5392

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.249 0.249 333.50 0.000

2 0.070 0.009 359.96 0.000

3 -0.010 -0.031 360.51 0.000

4 -0.012 -0.003 361.26 0.000

5 0.013 0.020 362.17 0.000

6 -0.016 -0.025 363.56 0.000

7 0.009 0.018 364.03 0.000

8 -0.011 -0.016 364.72 0.000

9 0.020 0.027 366.98 0.000

10 0.028 0.019 371.31 0.000

11 0.013 -0.000 372.25 0.000

12 0.031 0.027 377.34 0.000

13 0.023 0.012 380.11 0.000

14 0.025 0.014 383.36 0.000

15 0.035 0.028 390.07 0.000

16 -0.001 -0.018 390.08 0.000
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Additionally, the values of the autocorrelations oscillate around zero, indicating the absence of a long-term trend 

in the series, thus reflecting alternating dependence between returns. 

These results lead us to reject the null hypothesis of no serial autocorrelation and accept the alternative 

hypothesis that the studied time series exhibits serial dependence. The result of the autocorrelation test 

reinforces the findings of the first non-normality test and leads us to reject the weak-form efficient market 

hypothesis for the Moroccan stock market. 

 

Unit Root Test (Stationarity Test) 

The standard tests used in econometrics to determine whether a process is stationary or not include the 

Dickey and Fuller tests (1979), the Philips-Perron test (1995), and the Kwiatkowski et al. test (1992). We 

applied both the ADF and PP tests to the series of geometric returns of the MASI index. The null hypothesis 

tested is the presence of a unit root for both the Augmented Dickey-Fuller (ADF) and Philips-Perron (PP) tests. 

 

The results are presented in tables 2 and 3. 

Table 2: Augmented Dickey-Fuller Test Table 3: Philips-Perron Test 

  
The results of the Augmented Dickey-Fuller (ADF) and Philips-Perron (PP) unit root tests indicate that 

the t-statistic for both tests is significantly lower than the critical values at the 1%, 5%, and 10% significance 

levels, suggesting that the series of geometric returns for the MASI index is stationary. 

 

Variance Ratio Test  

The variance ratio test was introduced by Cochrane (1988) and Lo and McKinlay (1988). It tests the 

hypothesis of a random walk by examining both the assumptions of homoscedasticity and heteroscedasticity. 

This test exploits the fact that the variance of increments in a random walk process is linear over the sampling 

interval. In other words, the variance of the 𝑞th
 differences of the series is equal to 𝑞 times the variance of the 

first differences of the series. In this test, the variance of the series data differences is compared over different 

intervals. The test's statistics are used to test the null hypothesis of a random walk under two different 

assumptions of homoscedasticity and heteroscedasticity using an asymptotic distribution. 

If the variance ratio is equal to one, it means that the returns follow a random walk. To accept the null 

hypothesis, the joint probability should be greater than 0.05, meaning that the absolute value of the calculated z-

statistic of the test must be less than the critical value of 1.96, and the variance ratio over the entire period is 

equal to one. 

 

Tables 5 and 6 present the results of the variance ratio test under the two hypotheses. 

Table 5: Homoscedasticity Hypothesis Table 6 : Heteroscedasticity Hypothesis 

  

Null Hypothesis: MASI_GRETURNS has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=32)

t-Statistic   Prob.*

Augmented Dickey-Fuller test statistic -56.95293  0.0001

Test critical values: 1% level -3.431382

5% level -2.861881

10% level -2.566994

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(MASI_GRETURNS)

Method: Least Squares

Date: 10/31/23   Time: 23:11

Sample (adjusted): 1/04/2002 8/11/2023

Included observations: 5391 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

MASI_GRETURNS(-1) -0.751370 0.013193 -56.95293 0.0000

C 0.016494 0.010088 1.635052 0.1021

R-squared 0.375741     Mean dependent var -0.000152

Adjusted R-squared 0.375625     S.D. dependent var 0.936963

S.E. of regression 0.740364     Akaike info criterion 2.237021

Sum squared resid 2953.920     Schwarz criterion 2.239467

Log likelihood -6027.891     Hannan-Quinn criter. 2.237875

F-statistic 3243.637     Durbin-Watson stat 2.004110

Prob(F-statistic) 0.000000

Null Hypothesis: MASI_GRETURNS has a unit root

Exogenous: Constant

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

Adj. t-Stat   Prob.*

Phillips-Perron test statistic -57.01014  0.0001

Test critical values: 1% level -3.431382

5% level -2.861881

10% level -2.566994

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction)  0.547935

HAC corrected variance (Bartlett kernel)  0.552346

Phillips-Perron Test Equation

Dependent Variable: D(MASI_GRETURNS)

Method: Least Squares

Date: 10/31/23   Time: 23:15

Sample (adjusted): 1/04/2002 8/11/2023

Included observations: 5391 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.  

MASI_GRETURNS(-1) -0.751370 0.013193 -56.95293 0.0000

C 0.016494 0.010088 1.635052 0.1021

R-squared 0.375741     Mean dependent var -0.000152

Adjusted R-squared 0.375625     S.D. dependent var 0.936963

S.E. of regression 0.740364     Akaike info criterion 2.237021

Sum squared resid 2953.920     Schwarz criterion 2.239467

Log likelihood -6027.891     Hannan-Quinn criter. 2.237875

F-statistic 3243.637     Durbin-Watson stat 2.004110

Prob(F-statistic) 0.000000

Null Hypothesis: MASI_GRETURNS is a random walk

Date: 11/01/23   Time: 20:21

Sample: 1/03/2002 8/11/2023

Included observations: 5391 (after adjustments)

Standard error estimates assume no heteroskedasticity

User-specified lags: 2 4 8 16

Joint Tests Value df Probability

Max |z| (at period 2)*  27.96799  5391  0.0000

Wald (Chi-Square)  818.6302  4  0.0000

Individual Tests

Period Var. Ratio Std. Error z-Statistic Probability

 2  0.619086  0.013620 -27.96799  0.0000

 4  0.337005  0.025480 -26.02021  0.0000

 8  0.168642  0.040287 -20.63569  0.0000

 16  0.083697  0.059950 -15.28455  0.0000

*Probability approximation using studentized maximum modulus with

        parameter value 4 and infinite degrees of freedom

Null Hypothesis: MASI_GRETURNS is a martingale

Date: 11/01/23   Time: 20:20

Sample: 1/03/2002 8/11/2023

Included observations: 5391 (after adjustments)

Heteroskedasticity robust standard error estimates

User-specified lags: 2 4 8 16

Joint Tests Value df Probability

Max |z| (at period 2)*  11.28813  5391  0.0000

Individual Tests

Period Var. Ratio Std. Error z-Statistic Probability

 2  0.619086  0.033745 -11.28813  0.0000

 4  0.337005  0.061014 -10.86621  0.0000

 8  0.168642  0.091458 -9.090012  0.0000

 16  0.083697  0.122396 -7.486358  0.0000

*Probability approximation using studentized maximum modulus with

        parameter value 4 and infinite degrees of freedom
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Under both hypotheses, the z-statistic suggests that the variance ratio is significantly different from 1 for 

all values of 𝑞. The results of this test indicate that the null hypothesis of a random walk is rejected for the 

returns of the MASI index. 

 

 Analysis of double long memory property 

In this section, we tested the efficiency of the Moroccan stock market by analyzing the double long 

memory property in conditional mean and conditional variance. We estimated four joint models, ARFIMA-

FIGARCH, ARFIMA-FIEGARCH, ARFIMA-FIAPARCH, and ARFIMA-HYGARCH, under different distribution 

assumptions such as Normal distribution, Student's distribution, Skewed Student's distribution, and Generalized 

Error Distribution (GED).  

The parameters of ARFIMA-FIGARCH and ARFIMA-FIAPARCH models were estimated using Baillie et 

al. (1996) (BBM) approach and Chung's (1999) approach.Several combinations of parameters for the four 

models were tested, and we selected the models with the most significant estimations. The results are presented 

in the tables below. 

 

 Estimation Results of the joint ARFIMA-FIGARCH model 

Table 7: ARFIMA (1, d, 1)-FIGARCH (1, d, 

1)Chung’s method (Student  distribution) 

Table 8: ARFIMA (1, d, 1)-FIGARCH (1, d, 1)   

Chung’s method (Skewed Student distribution) 

 
Coefficient Std.Error t-value t-prob 

 
Coefficient Std.Error t-value t-prob 

Cst(M)                0.030323 0.011456 2.647 0.0081 Cst(M)                0.020469 0.012364 1.655 0.0979 

d-Arfima              0.054708 0.021883 2.500 0.0124 d-Arfima              0.053478 0.021868 2.446 0.0145 

AR(1)                 0.146817 0.088729 1.655 0.0980 AR(1)                 0.150827 0.088184 1.710 0.0873 

MA(1)                -0.051754 0.077646 -0.6665 0.5051 MA(1)                -0.055401 0.077106  -0.7185 0.4725 

Cst(V)                0.382922 0.087703 4.366 0.0000 Cst(V)                0.381939 0.089317 4.276 0.0000 

d-Figarch             0.290610 0.019251 15.10 0.0000 d-Figarch             0.290861 0.019485 14.93 0.0000 

ARCH(Phi1)           -0.667964 0.18547 -3.601 0.0003 ARCH(Phi1)           -0.654630 0.19700 -3.323 0.0009 

GARCH(Beta1)        -0.654827 0.19140 -3.421 0.0006 GARCH(Beta1)         -0.641378 0.20369 -3.149 0.0016 

Student(DF)           5.035450 0.28241 17.83 0.0000 Asymmetry            -0.034785 0.017367 -2.003 0.0452 

     
Tail                  5.044149 0.28286 17.83 0.0000 

 

The tables 7 and 8 show that both long memory parameters d-ARFIMA and d-FIGARCH of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) (Chung's method) under the assumptions of Student's and Skewed 

Student's distributions are statistically significant at a 5% significance level, and all other parameters are 

statistically significant except for the 𝑀𝐴(1) coefficient of the first-order moving average. We conclude that the 

joint 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) model (Chung's method) allows capturing the double long memory 

property in the returns and volatility of the MASI index. 

 

Table 9: ARFIMA (1, d, 0)-FIGARCH (1, d, 1)         

Chung's method (Student distribution) 

Table 10: ARFIMA (1, d, 0)-FIGARCH (1, d, 1)       

Chung's method (GED distribution) 
 Coefficient Std.Error t-value t-prob  Coefficient Std.Error t-value t-prob 

Cst(M)                0.030521 0.011691 2.611 0.0091 Cst(M)                0.032852 0.011773 2.791 0.0053 

d-Arfima              0.058520 0.020653 2.834 0.0046 d-Arfima              0.055303 0.020142 2.746 0.0061 

AR(1)                 0.091193 0.024865 3.668 0.0002 AR(1)                 0.083869 0.022064 3.801 0.0001 

Cst(V)                0.375014 0.088996 4.214 0.0000 Cst(V)                0.347716 0.082919 4.193 0.0000 

d-Figarch             0.289449 0.019274 15.02 0.0000 d-Figarch             0.288311 0.019950 14.45 0.0000 

ARCH(Phi1)           -0.680714 0.16219 -4.197 0.0000 ARCH(Phi1)           -0.651573 0.20291 -3.211 0.0013 

GARCH(Beta1)        -0.668279 0.16785 -3.982 0.0001 GARCH(Beta1)        -0.639662 0.21181 -3.020 0.0025 

Student(DF)           5.043026 0.28430 17.74 0.0000 G.E.D.(DF)            1.217042 0.034044 35.75 0.0000 

 

Tables 9 and 10 show that both long memory parameters, d-ARFIMA and d-FIGARCH, of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) (Chung's method) under the assumptions of Student's and 

Generalized Error Distribution (GED) are statistically significant at a 1% significance level, and all other 

parameters are statistically significant at a 1% significance level. We conclude that the joint 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-

𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) model (Chung's method) allows capturing the double long memory property in the returns 

and volatility of the MASI index. 
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Table 11: ARFIMA (0, d, 1)- FIGARCH (1, d, 1)  

Chung's method (Student distribution) 

Table 12: ARFIMA (0, d, 1)- FIGARCH (1, d, 1) 

Chung's method (Skewed Student distribution) 

 
Coefficient Std.Error 

t-

value 
t-prob 

 
Coefficient Std.Error t-value t-prob 

Cst(M)                0.031403 0.012273 2.559 0.0105 Cst(M)                0.022050 0.013279 1.661 0.0969 

d-Arfima              0.067095 0.018282 3.670 0.0002 d-Arfima              0.066274 0.018150 3.652 0.0003 

MA(1)                 0.079285 0.019959 3.972 0.0001 MA(1)                 0.079404 0.019770 4.016 0.0001 

Cst(V)                0.376034 0.094587 3.976 0.0001 Cst(V)                0.435065 0.10455 4.161 0.0000 

d-Figarch             0.290031 0.019705 14.72 0.0000 d-Figarch             0.204518 0.033931 6.027 0.0000 

ARCH(Phi1)           -0.663247 0.19928 -3.328 0.0009 ARCH(Phi1)            0.839882 0.081793 10.27 0.0000 

GARCH(Beta1)        -0.650418 0.20451 -3.180 0.0015 GARCH(Beta1)          0.768215 0.10297 7.460 0.0000 

Student(DF)           5.038523 0.28498 17.68 0.0000 Asymmetry            -0.033777 0.017465 -1.934 0.0532 

     
Tail                  5.022836 0.29490 17.03 0.0000 

 

Tables 11 and 12 show that both long memory parameters, d-ARFIMA and d-FIGARCH, of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) (Chung's method) under the assumptions of Student's and Skewed 

Student's distributions are statistically significant at a 1% significance level, and all other parameters are 

statistically significant. We conclude that the joint 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) model (Chung's 

method) allows capturing the double long memory property in the returns and volatility of the 𝑀𝐴𝑆𝐼 index. 

 

Table 13: ARFIMA (0, d, 1)- FIGARCH (1, d, 1)    

BBM's method (Student distribution) 

Table 14: ARFIMA (0, d, 1)- FIGARCH (0, d, 1) 

BBM's method (Student distribution) 

 

Coefficient Std.Error t-value   t-prob 

 

Coefficient Std.Error t-value t-prob 

Cst(M)                0.031932 0.011984 2.665 0.0077 Cst(M)                0.031768 0.011982 2.651 0.0080 

d-Arfima              0.066707 0.017733 3.762 0.0002 d-Arfima              0.066737 0.017757 3.758 0.0002 

MA(1)                 0.079719 0.019428 4.103 0.0000 MA(1)                 0.079845 0.019450 4.105 0.0000 

Cst(V)                0.064450 0.010158 6.345 0.0000 Cst(V)                0.070665 0.011367 6.217 0.0000 

d-Figarch             0.430973 0.057829 7.452 0.0000 d-Figarch             0.418470 0.046556 8.988 0.0000 

GARCH(Beta1)          0.093650 0.056624 1.654 0.0982 ARCH(Phi1)           -0.080717 0.043579 -1.852 0.0641 

Student(DF)           4.502673 0.26454 17.02 0.0000 Student(DF)           4.513154 0.26354 17.12 0.0000 

 

Tables 13 and 14 show that both long memory parameters, d-ARFIMA and d-FIGARCH, of the joint 

models 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 0) (BBM method) and 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(0, 𝑑, 1) (BBM 

method) under the assumption of the Student's distribution are statistically significant at a 1% significance level, 

and all other parameters are statistically significant. We conclude that the joint models 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-

𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 0) (BBM method) and 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐺𝐴𝑅𝐶𝐻(0, 𝑑, 1) (BBM method) allow capturing the 

double long memory property in the returns and volatility of the MASI index. 

 
 Estimation Results of the joint ARFIMA-FIEGARCH model 

Table 15: ARFIMA (1, d, 0)- FIEGARCH (1, d, 0) 

Normal distribution 

Table 16: ARFIMA (1, d, 0)- FIEGARCH (1, d, 0)      

GED distribution 

 

Coefficient Std.Error t-value t-prob 

 

Coefficient Std.Error t-value t-prob 

Cst(M)                0.009747 0.012867 0.7575 0.4488 Cst(M)                0.029976 0.010981 2.730 0.0064 

d-Arfima              0.039748 0.018833 2.111 0.0349 d-Arfima              0.053350 0.024599 2.169 0.0301 

AR(1)                 0.147680 0.025418 5.810 0.0000 AR(1)                 0.092696 0.030262 3.063 0.0022 

Cst(V)               -0.049849 0.25424 -0.1961 0.8446 Cst(V)               -1.101690 0.21195 -5.198 0.0000 

d-Figarch             0.434855 0.070721 6.149 0.0000 d-Figarch             0.496294 0.052718 9.414 0.0000 

GARCH(Beta1)          0.389168 0.14803 2.629 0.0086 GARCH(Beta1)          0.280907 0.11483 2.446 0.0145 

EGARCH(Theta1)       -0.039690 0.019283 -2.058 0.0396 EGARCH(Theta1)       -0.024510 0.016214 -1.512 0.1307 

EGARCH(Theta2)        0.447789 0.046820 9.564 0.0000 EGARCH(Theta2)        0.464606 0.038846 11.96 0.0000 

     
G.E.D.(DF)            1.200035 0.034849 34.44 0.0000 

 

Tables 15 and 16 show that both long memory parameters, d-ARFIMA and d-FIEGARCH, of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 0) under the assumptions of Normal and Generalized Error 

Distribution (GED) are statistically significant at a 5% significance level, and all other parameters are 

statistically significant, including the constants of the normal distribution model and the EGARCH coefficient of 

the GED distribution model. We conclude that the joint 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 0) model allows 

capturing the double long memory property in the returns and volatility of the MASI index. 
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Table 17: ARFIMA(1, d, 0) -FIEGARCH(0, d, 1)    

Normal distribution 

Table 18: ARFIMA(1, d, 0) -FIEGARCH(0, d, 1)          

GED distribution 

 

Coefficient Std.Error t-value t-prob 

 

Coefficient Std.Error t-value t-prob 

Cst(M)                0.009750 0.0083028 1.174 0.2403 Cst(M)                0.029988 0.0099449 3.015 0.0026 

d-Arfima              0.040128 0.016056 2.499 0.0125 d-Arfima              0.053089 0.020328 2.612 0.0090 

AR(1)                 0.148119 0.014585 10.16 0.0000 AR(1)                 0.093246 0.028655 3.254 0.0011 

Cst(V)                0.061798 0.26037   0 .2373 0.8124 Cst(V)               -1.128074 0.22476 -5.019 0.0000 

d-Figarch             0.484356 0.043558 11.12 0.0000 d-Figarch             0.524007 0.037114 14.12 0.0000 

ARCH(Phi1)            0.345742 0.14812 2.334 0.0196 ARCH(Phi1)            0.260952 0.10533 2.477 0.0133 

EGARCH(Theta1)       -0.039306 0.020114 -1.954 0.0507 EGARCH(Theta1)       -0.024063 0.016425 -1.465 0.1430 

EGARCH(Theta2)        0.460323 0.047271 9.738 0.0000 EGARCH(Theta2)        0.469530 0.037831 12.41 0.0000 

     
G.E.D.(DF)            1.199780 0.034975 34.30 0.0000 

 

Tables 17 and 18 show that both long memory parameters, d-ARFIMA and d-FIEGARCH, of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(0, 𝑑, 1) under the assumptions of Normal and Generalized Error 

Distribution (GED) are statistically significant at a 5% significance level, and all other parameters are 

statistically significant, including the constants of the normal distribution model and the EGARCH coefficient of 

the GED distribution model. We conclude that the joint 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(0, 𝑑, 1) model allows 

capturing the double long memory property in the returns and volatility of the MASI index. 

 

Table 19: ARFIMA(1, d, 0) -FIEGARCH(0, d, 1)      

Normal distribution 

Table 20: ARFIMA(1, d, 0) -FIEGARCH(0, d, 1)        

GED  distribution 

 

Coefficient Std.Error t-value t-prob 

 

Coefficient Std.Error t-value t-prob 

Cst(M)                0.011518 0.015293 0.7532 0.4514 Cst(M)                0.030624 0.012756 2.401 0.0164 

d-Arfima              0.069314 0.020278 3.418 0.0006 d-Arfima              0.060550 0.021939 2.760 0.0058 

MA(1)                 0.106703 0.022615 4.718 0.0000 MA(1)                 0.081809 0.025446 3.215 0.0013 

Cst(V)               -0.215660 0.23156 -0.9313 0.3517 Cst(V)               -1.091067 0.20632 -5.288 0.0000 

d-Figarch             0.308998 0.12957 2.385 0.0171 d-Figarch             0.492003 0.052059 9.451 0.0000 

ARCH(Phi1)           -0.519131 0.20905 -2.483 0.0130 GARCH(Beta1)          0.291503 0.11205 2.602 0.0093 

GARCH(Beta1)          0.830977 0.14359 5.787 0.0000 EGARCH(Theta1)       -0.024511 0.016274 -1.506 0.1321 

EGARCH(Theta1)       -0.043355 0.020118 -2.155 0.0312 EGARCH(Theta2)        0.463862 0.039099 11.86 0.0000 

EGARCH(Theta2)        0.458733 0.043444 10.56 0.0000 G.E.D.(DF)            1.199837 0.034871 34.41 0.0000 

 

Tables 19 and 20 show that both long memory parameters, d-ARFIMA and d-FIEGARCH, of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) under the assumptions of Normal and Generalized Error 

Distribution (GED) are statistically significant at a 1% significance level, and all other parameters are 

statistically significant, including the constants of the normal distribution model and the EGARCH coefficient of 

the GED distribution model. We conclude that the joint 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) model allows 

capturing the double long memory property in the returns and volatility of the MASI index. 

 

Table 21: ARFIMA(0, d, 1) -FIEGARCH(0, d, 1)      

Normal distribution 

Table 22: ARFIMA(0, d, 1) -FIEGARCH(0, d, 1)    

Student distribution 

 

Coefficient Std.Error t-value t-prob 

 

Coefficient Std.Error t-value t-prob 

Cst(M)                0.012106 0.014634 0.8273 0.4081 Cst(M)                0.030387 0.012985 2.340 0.0193 

d-Arfima              0.066453 0.019558 3.398 0.0007 d-Arfima              0.064518 0.023528 2.742 0.0061 

MA(1)                 0.116016 0.022444 5.169 0.0000 MA(1)                 0.089337 0.034243 2.609 0.0091 

Cst(V)                0.075103 0.26296 0.2856 0.7752 Cst(V)               -0.999196 0.21282 -4.695 0.0000 

d-Figarch             0.485823 0.043695 11.12 0.0000 d-Figarch             0.518257 0.035018 14.80 0.0000 

ARCH(Phi1)            0.342429 0.14848 2.306 0.0211 ARCH(Phi1)            0.256648 0.094699 2.710 0.0067 

EGARCH(Theta1

)       -0.039942 0.020403 -1.958 0.0503 
EGARCH(Theta1

)       -0.016128 0.016916  - 0.9534 0.3404 

EGARCH(Theta2

)        0.461195 0.047471 9.715 0.0000 
EGARCH(Theta2

)        0.488159 0.036689 13.31 0.0000 

     
Student(DF)           4.661052 0.28809 16.18 0.0000 

 

Tables 21 and 22 show that both long memory parameters, d-ARFIMA and d-FIEGARCH, of the joint 

model 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(0, 𝑑, 1) under the assumptions of Normal and Generalized Error 

Distribution (GED) are statistically significant at a 1% significance level, and all other parameters are 

statistically significant, including the constants of the normal distribution model and the EGARCH coefficient of 

the GED distribution model. We conclude that the joint 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐸𝐺𝐴𝑅𝐶𝐻(0, 𝑑, 1) model allows 

capturing the double long memory property in the returns and volatility of the MASI index. 
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 Estimation Results of the joint ARFIMA-FIAPARCH model 

Table 23: ARFIMA (1, d, 0)- FIAPARCH (1, d, 1)     

Chung's Method (Normal distribution) 

Table 24: ARFIMA (0, d, 1)- FIAPARCH (1, d, 1)    

Chung's Method (Normal distribution) 

 

Coefficient Std.Error t-value t-prob 

 

Coefficient Std.Error t-value  t-prob 

Cst(M)                0.019729 0.013073 1.509 0.1313 Cst(M)                0.019688 0.014331 1.374 0.1696 

d-Arfima              0.054248 0.026163 2.073 0.0382 d-Arfima              0.070083 0.022150 3.164 0.0016 

AR(1)                 0.114129 0.030815 3.704 0.0002 MA(1)                 0.091140 0.022891 3.982 0.0001 

Cst(V)                0.355954 0.21357 1.667 0.0956 Cst(V)                0.346985 0.21126 1.642 0.1006 

d-Figarch             0.204019 0.052417 3.892 0.0001 d-Figarch             0.203927 0.052894 3.855 0.0001 

ARCH(Phi1)            0.849750 0.11749 7.233 0.0000 ARCH(Phi1)            0.848055 0.12118 6.998 0.0000 

GARCH(Beta1)          0.785313 0.16151 4.862 0.0000 GARCH(Beta1)          0.782802 0.16663 4.698 0.0000 

APARCH(Gamma1)        0.081680 0.039333 2.077 0.0379 APARCH(Gamma1)        0.082675 0.039309 2.103 0.0355 

APARCH(Delta)        2.068316 0.15963 12.96 0.0000 APARCH(Delta)         2.074937 0.15987 12.98 0.0000 

 

Tables 23 and 24 show that both long memory parameters, d-ARFIMA and d-FIGARCH, of the joint 

models ARFIMA(1,d,0)-FIAPARCH(1,d,1) (Chung's method) and 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻(1, 𝑑, 1) 

(Chung's method) under the assumption of the Normal distribution are statistically significant at a 5% 

significance level, and all other parameters are statistically significant except for the constants of the 

𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻(1, 𝑑, 1) model. We conclude that the joint models ARFIMA(1,d,0)-

FIAPARCH(1,d,1) (Chung's method) and 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐹𝐼𝐴𝑃𝐴𝑅𝐶𝐻(1, 𝑑, 1) (Chung's method) allow 

capturing the double long memory property in the returns and volatility of the MASI index. 

 

 Estimation results of the joint ARFIMA-HYGARCH model 

Table 25: ARFIMA (1, d, 0)- HYGARCH (1, d, 1)         

GED distribution 

Table 26: ARFIMA (0, d, 1)- HYGARCH (1, d, 1)    

GED distribution 

 

Coefficient Std.Err t-value t-prob 

 

Coefficient Std.Error t-value t-prob 

Cst(M)                0.033311 0.0091561 3.638 0.0003 Cst(M)                0.033580 0.012311 2.728 0.0064 

d-Arfima              0.054347 0.011379 4.776 0.0000 d-Arfima              0.061605 0.015582 3.954 0.0001 

AR(1)                 0.085382 0.010966 7.786 0.0000 MA(1)                 0.075006 0.016351 4.587 0.0000 

Cst(V)                0.063244 0.021876 2.891 0.0039 Cst(V)                0.063272 0.022058 2.868 0.0041 

d-Figarch             0.457566 0.073335 6.239 0.0000 d-Figarch             0.458128 0.073454 6.237 0.0000 

ARCH(Phi1)            0.087109 0.21925 0.3973 0.6912 ARCH(Phi1)            0.088046 0.22149 0.3975 0.6910 

GARCH(Beta1)          0.202492 0.24931 0.8122 0.4167 GARCH(Beta1)          0.203329 0.25172 0.8078 0.4193 

G.E.D.(DF)            1.207892 0.034592 34.92 0.0000 G.E.D.(DF)            1.208029 0.034583 34.93 0.0000 

Log Alpha (HY)       -0.102143 0.051670 -1.977 0.0481 
Log Alpha 

(HY)       -0.102833 0.051596 -1.993 0.0463 

 

Tables 25 and 26 show that both long memory parameters, d-ARFIMA and d-FIGARCH, of the joint 

models 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-HYGARCH(1,d,1) and 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐻𝑌𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) under the assumption 

of the Generalized Error Distribution (GED) are statistically significant at a 1% significance level, and all other 

parameters are statistically significant except for the coefficients of the ARCH and GARCH terms. We conclude 

that the joint models 𝐴𝑅𝐹𝐼𝑀𝐴(1, 𝑑, 0)-𝐻𝑌𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) and 𝐴𝑅𝐹𝐼𝑀𝐴(0, 𝑑, 1)-𝐻𝑌𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) allow 

capturing the double long memory property in the returns and volatility of the MASI index. 

In this section, we tested the efficiency of the Moroccan stock market by analyzing the double long 

memory property in conditional mean and conditional variance. We estimated four joint models. All the models 

estimated allow capturing the double long memory property in the returns and volatility of the MASI index, 

contradicting the market efficiency hypothesis. 

 

6. Conclusion 
In this study, we tested the hypothesis of weak-form informational efficiency on the Casablanca Stock 

Exchange during the period from 03/01/2002 to 15/08/2023. We began by testing the random walk hypothesis 

by applying several standard statistical tests to the series of geometric returns of the Casablanca Stock Exchange 

index (MASI), such as the normality test, stationarity tests, return autocorrelation tests, and variance ratio test. 

The results obtained from these tests strongly rejected the random walk hypothesis of the Moroccan stock 

market over the examined period, thus concluding that the Casablanca Stock Exchange is not an efficient market 

in its weak form. These conclusions align with those of several studiesas mentioned above in the literature 

review. 
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We then tested the presence of double long memory in both the conditional mean and conditional 

variance of the geometric returns of the MASI index by applying the four joint models ARFIMA-FIGARCH, 

ARFIMA-FIEGARCH, ARFIMA-FIAPARCH, and ARFIMA-HYGARCH, under different distribution 

assumptions such as Normal distribution, Student's distribution, Skewed Student's distribution, and Generalized 

Error Distribution (GED). The parameters of the ARFIMA-FIGARCH and ARFIMA-FIAPARCH models were 

estimated using Baillie et al. (1996) (BBM) approach and Chung's (1999) approach. Several combinations of 

parameters for the four models were tested, and we selected models with the most significant estimations. 

The empirical results of all these models showed that both long memory parameters are statistically 

significant at a 1% or 5% significance level, and most other parameters are statistically significant, except for 

sometimes 1 or 2 parameters.  

All the models estimated allow capturing the double long memory property in the returns and volatility 

of the MASI index, contradicting the market efficiency hypothesis. These results confirm that the Moroccan 

stock market is inefficient in its weak form. 
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