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1. Introduction 

Several empirical studies have demonstrated that linear models fail to explain the stylized features of 

financial time series, such as leptokurtic distributions, volatility clustering, leverage effect, and asymmetry. 

Faced with this limitation of linear models, researchers have embarked on the development of non-linear time 

series models to account for the non-linear dynamics of the data. 

In recent years, the application of regime-switching models in the fields of finance and economics has 

garnered increasing interest. Initially designed to represent expansion and recession phases in economic cycles, 

these regime-switching models have become particularly prevalent in the dynamic modeling of stock market 

returns. 

An example of a model capable of capturing regime changes is the Smooth Transition Autoregressive 

(STAR) model, developed by Teräsvirta (1994) and Teräsvirta et al. (2002). The STAR model is an extension of 

the commonly used Autoregressive (AR) model, suggesting the existence of non-linear behavior within the time 

series. In this framework, the transition between regimes is governed by a transition function, typically 

described as a logistic or exponential function. 

Unlike the Threshold Autoregressive (TAR) model, initially developed by Tong and Lim (1980) and 

extensively discussed in Tong (1983) and Tong (1990), which operates a sudden transition, Smooth Transition 

Regression (STR) models operate a transition smoothly, based on a transition variable. 

The main added value of STAR models lies in the fact that variations observed in financial series are 

influenced by the evolving behavior of various participants. It is unlikely that all these participants react 

simultaneously to a specific economic signal. 

In financial markets, characterized by the participation of numerous investors and speculators adjusting 

their positions at different times, the idea of a smooth transition or a continuum of states between extremes 
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seems to better reflect reality. The diversity of investors' objectives stems from their varied investment horizons, 

diverse geographical locations, as well as distinct profiles and levels of risk aversion. Moreover, investors may 

exhibit different degrees of institutional inertia, depending, for example, on the efficiency of the stock markets 

in which they operate, and adjust their positions with distinct time lags. STAR models provide precise flexibility 

to model such gradual changes while remaining adaptable enough to include discrete changes as a special case. 

This study adopts the Smooth Transition Autoregressive (STAR) modeling framework to examine the 

non-linear dynamics of the Moroccan stock market. The structure of the document is as follows: Section 2 

provides a literature review focusing on empirical works applying the STAR model. Section 3 presents the data 

and the adopted methodology. Section 4 discusses and interprets the empirical results obtained. Finally, Section 

5 concludes the study. 

 

2. Literature Review 
Over the past two decades, there has been a steady growth in interest in non-linear time series models. In 

the context of financial time series, models allowing for regime changes have been particularly favored, 

especially Smooth Transition Autoregressive (STAR) models. In this section, we review some empirical studies 

that have focused on the applications of STAR models to financial time series. 

Sarantis (1999) analyzed non-linearities in the real effective exchange rates of ten major G-10 industrial 

economies, applying Smooth Transition Autoregressive (STAR) models. Lagrange Multiplier (LM) linearity tests 

rejected linearity for eight exchange rates during the 1980s and 1990s. The results showed that exchange rates in 

three countries follow logistic STAR models, while other exchange rates are governed by exponential STAR 

models. Parameter estimates in STAR models indicated a relatively slow transition speed from one exchange rate 

regime to another for all countries. Regarding out-of-sample forecasting performance, the authors found little 

difference between STAR models and linear models. However, STAR models outperformed the Markov regime-

switching model. 

Similarly, Tayyab et al. (2012) examined the adequacy of specifying Smooth Transition Autoregressive 

(STAR) models for modeling monthly real exchange rates in Pakistan from 1980 to 2010. The authors selected 

the 𝐴𝑅(1) autoregressive model as the best fit to the data. They found that the logistic STAR model is preferred 

over the exponential STAR model. The results indicated that the monthly real exchange rate market in Pakistan 

exhibits non-linearity during the study period. 

Chien-Jen et al. (2013) applied Smooth Transition Autoregressive models with exogenous regressors 

(STARX) to assess the relationship between the Yuan/Dollar exchange rate and the stock returns of Shanghai A, 

Shanghai B, Shenzhen A, and Shenzhen B indices in China. The authors initially estimated the optimal linear 

regression model, where the dependent variable consists of the stock returns of Shanghai and Shenzhen, and the 

explanatory variables are lagged Yuan/Dollar exchange rates. The results suggested strong statistical 

significance for delayed exchange rates of one and four periods. Lagrange Multiplier (LM) tests revealed that the 

delay parameter, 𝑑 = 1, was the best choice, and the null hypothesis of linearity in the LM test was rejected. The 

authors found that the logistic STARX non-linear model provided the best forecasting performance for both 

Shanghai and Shenzhen stock markets. The results showed that Shanghai B and Shenzhen B indices have a 

higher transition speed than Shanghai A and Shenzhen A indices, possibly due to greater accessibility to foreign 

investors. 

Si Mohammed et al. (2015) also investigated the real exchange rates of Algeria, modeling non-linearity 

using monthly data for the period M1:1994 to M4:2015, totaling 256 observations, applying Smooth Transition 

Autoregressive models. Test results rejected the null hypothesis of linearity in favor of the alternative hypothesis 

of non-linearity. Following Teräsvirta's (1994) strategy, the study suggested the use of a lagged real exchange 

rate of 1 as the transition variable and the logistic STAR model as the suitable model for fitting the data. 

Siti Rohani et al. (2015) applied the Smooth Transition Autoregressive (STAR) model to the daily stock 

returns of Malaysia Airlines (MAS) from August 29, 1996, to September 26, 2014, totaling 4450 observations. 

Following Teräsvirta's (1994) strategy, they first selected the AR(3) autoregressive model as the optimal model 

that best fits the data. Then, using Lagrange Multiplier (LM) tests, they found that the delay parameter, d=3, was 

the best choice, and the null hypothesis of linearity in the LM test was rejected. Applying the nested hypothesis 

sequence with 𝑑 = 3, they found that the logistic LSTAR model was preferred over the exponential ESTAR 

model. After estimating the parameters of the chosen LSTAR model, they conducted forecasts and compared 

them with other models. They found that the LSTAR model outperformed the ESTAR and 𝐴𝑅(3) models. 



 

 International 

   Journal 
Of Advanced Research in Engineering & Management (IJAREM) 

ISSN: 2456-2033 || PP. 32-53 

 

 
| Vol. 10 | Issue 02 | 2024 | 34 | 

Similarly, Akintunde et al. (2016) applied the Smooth Transition Autoregressive (STAR) model to the 

monthly returns of the Botswana stock market from January 1987 to December 2012, covering three hundred 

months. They first selected the 𝐴𝑅(5) autoregressive model as the optimal model. Then, using Lagrange 

Multiplier (LM) tests, they found that the delay parameter, 𝑑 = 2, was the best choice, and the null hypothesis of 

linearity in the LM test was rejected. They also found that the logistic LSTAR autoregressive model was 

preferred over the exponential ESTAR model and performed better in terms of forecasting. 

Additionally, Daabaji (2018) conducted a study to test the efficiency hypothesis of the Moroccan stock 

market by applying the Smooth Transition Autoregressive (STAR) model to the daily returns of the MASI index 

from the Casablanca Stock Exchange from January 1, 2004, to December 31, 2017. Based on the partial 

autocorrelation of the MASI returns series, the author chose the 𝐴𝑅(3) autoregressive model as the best-fitting 

model. The results of Lagrange Multiplier (LM) tests revealed that the delay parameter, 𝑑 = 3, was the best 

choice, and the null hypothesis of linearity in the LM test was rejected. Additionally, the exponential logistic 

ESTAR model was preferred over the exponential LSTAR model, and the study concluded by estimating the 

parameters of the ESTAR model. 

Usman et al. (2018) compared the performances of Smooth Transition Autoregressive (STAR) models 

and linear Autoregressive (AR) models for monthly returns in Turkey and the FTSE Travel & Leisure index 

from April 1997 to August 2016. The MSCI World index was used as a proxy for the global market. Linearity 

tests rejected the null hypothesis of linearity. However, the results showed that the logistic STAR model did not 

improve out-of-sample forecasts compared to the linear AR model, indicating little gain in using the LSTAR 

model in predicting the Travel & Leisure stock index. 

 

3. Data and Methodology 
3.1 Data 

The data utilized in this study consist of the time series of daily closing prices, denoted as 𝑝𝑡 , for the 

MASI index covering the period from 03/01/2002 to 08/15/2023, totaling 5393 observations. Subsequently, 

these prices were transformed into geometric returns: 

𝑟𝑡 = 𝑙𝑛  
𝑝𝑡

𝑝𝑡−1

  (1) 

Where 𝑙𝑛 represents the natural logarithm.The data were collected from the investing.com website 

(www.investing.com). 

 

3.2 Methodology 

In this section, we will present the Smooth Transition Autoregressive model, denoted as STAR, developed 

by Teräsvirta (1994) and Van Dijk et al. (2002). However, we will start by introducing the Threshold 

Autoregressive model (abrupt transition), denoted as TAR, initially proposed by Tong and Lim (1980) and 

extensively discussed in the works of Tong, H. (1983) and Tong (1990). This model posits that the dynamic 

behavior of economic and financial time series depends on different regimes over time and can be adequately 

described by a linear AR model in each of these regimes. Our focus will be on models that are limited to two 

regimes. 

 

3.2.1 Threshold Autoregressive Model (TAR) 

A stochastic process  𝑦𝑡  is said to satisfy a Threshold Autoregressive model of order 𝑝, denoted as 

𝑇𝐴𝑅(𝑝), if it can be expressed in the form: for all 𝑡 > 𝑝 

𝑦𝑡 =  𝜙10 + 𝜙11 . 𝑦𝑡−1 + ⋯ + 𝜙1𝑝 . 𝑦𝑡−𝑝 . 𝕀 𝑠𝑡 ≤ 𝑐 +  𝜙20 + 𝜙21 . 𝑦𝑡−1 + ⋯ + 𝜙2𝑝 . 𝑦𝑡−𝑝 . 𝕀 𝑠𝑡 > 𝑐 

+ 𝜀𝑡  
(2) 

or alternatively: 

𝑦𝑡 = Φ1
′ 𝑍𝑡 . 𝕀 𝑠𝑡 ≤ 𝑐 + Φ2

′ 𝑍𝑡 . 𝕀 𝑠𝑡 > 𝑐 + 𝜀𝑡  (3) 

with : 

 𝜙𝑖𝑗  are the real coefficients to be estimated in the model for 1 ≤ 𝑖 ≤ 2  and 1 ≤ 𝑗 ≤ 𝑝, grouped in the single-

column matrix: 

Φ𝑖 =  𝜙𝑖0𝜙𝑖1 ⋯ 𝜙𝑖𝑝 
′
 (4) 

 𝑐 is the threshold parameter. 

 𝑠𝑡  is the transition variable. 
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 𝕀 .   is the indicator function, where 𝕀 𝐴 = 1   if event 𝐴 occurs and 𝕀 𝐴 = 0   if event 𝐴 does not occur. 

  𝜀𝑡  is a conditionally i.i.d white noise given the set ℑ𝑡−1 =  𝑦𝑡−1, 𝑦𝑡−2, ⋯ , 𝑦𝑡−𝑝  of information up to date 

𝑡 − 1, meaning 𝐸 𝜀𝑡 ℑ𝑡−1  = 0  and 𝐸 𝜀𝑡
2 ℑ𝑡−1  = 𝜎2. 

 The matrix 𝑍𝑡  is defined by: 

𝑍𝑡 =  1   𝑦𝑡−1𝑦𝑡−2 ⋯ 𝑦𝑡−𝑝 
′
 (5) 

The model (3) can also be written as: for all 𝑡 > 𝑝 

𝑦𝑡 = Φ1
′ 𝑍𝑡 .  1 − 𝕀 𝑠𝑡 > 𝑐  + Φ2

′ 𝑍𝑡 . 𝕀 𝑠𝑡 > 𝑐 + 𝜀𝑡  (6) 

When the transition variable 𝑠𝑡  is taken as a lagged value of the time series itself, i.e., 𝑠𝑡 = 𝑦𝑡−𝑑  for a 

certain integer 𝑑 >  0, the 𝑇𝐴𝑅(𝑝)  model is called a Self-Exciting Threshold Autoregressive model, denoted as 

𝑆𝐸𝑇𝐴𝑅(𝑝)for Self Excited Threshhold Autorgressive. In this case, we can write: 

𝐸 𝑦𝑡 ℑ𝑡−1  =  
Φ1

′ 𝑍𝑡    𝑠𝑖 𝑦𝑡−𝑑 ≤ 𝑐

Φ2
′ 𝑍𝑡    𝑠𝑖 𝑦𝑡−𝑑 > 𝑐

  (7) 

The main limitation of the TAR model lies in the fact that the transition between the two regimes occurs 

instantly at the threshold value 𝑐. Therefore, if the transition from one regime to another happens gradually over 

time rather than instantly when the value 𝑐 is reached, the TAR model fails to adequately capture this gradual 

transition between the two regimes. 

 
3.2.2 Smooth Transition Autoregressive Model (STAR) 

To overcome the inherent limitation of the TAR model, one solution is to adopt the Smooth Transition 

Autoregressive model, denoted as STAR, developed by Teräsvirta (1994) and Van Dijk et al. (2002). 

A more gradual transition between different regimes can be achieved by substituting the indicator 

function 𝕀 𝑠𝑡 > 𝑐 in equation (6) with a continuous function 𝐺 𝑠𝑡 , 𝛾, 𝑐 , which smoothly varies from 0 to 1 as𝑠𝑡  

increases. The resulting model is called a Smooth Transition Autoregressive model (STAR) and is given by: 

𝑦𝑡 =  𝜙10 + 𝜙11 . 𝑦𝑡−1 + ⋯ + 𝜙1𝑝 . 𝑦𝑡−𝑝 .  1 − 𝐺 𝑠𝑡 , 𝛾, 𝑐  

+  𝜙20 + 𝜙21 . 𝑦𝑡−1 + ⋯ + 𝜙2𝑝 . 𝑦𝑡−𝑝 . 𝐺 𝑠𝑡 , 𝛾, 𝑐 + 𝜀𝑡  
(8) 

or alternatively using the matrices Φ1 and Φ2: 

𝑦𝑡 = Φ1
′ 𝑍𝑡 .  1 − 𝐺 𝑠𝑡 , 𝛾, 𝑐  + Φ2

′ 𝑍𝑡 . 𝐺 𝑠𝑡 , 𝛾, 𝑐 + 𝜀𝑡  (9) 

where 𝐺 𝑠𝑡 , 𝛾, 𝑐  is the transition function that takes values between 0 and 1. 

An alternative formulation of the model is presented by: 

𝑦𝑡 = Φ1
′ 𝑍𝑡 +  Φ2 − Φ1 

′𝑍𝑡 . 𝐺 𝑠𝑡 , 𝛾, 𝑐 + 𝜀𝑡  (10) 

In practice, the transition function 𝐺 is most often of logistic or exponential form, and the transition 

variable 𝑠𝑡  is a lagged endogenous variable (with lag 𝑑): 

𝑠𝑡 = 𝑦𝑡−𝑑  (11) 

The logistic transition function is defined by: 

𝐺 𝑥, 𝛾, 𝑐 =
1

1 + 𝑒𝑥𝑝 −𝛾 𝑥 − 𝑐  
 (12) 

The exponential transition function is defined by: 

𝐺 𝑥, 𝛾, 𝑐 = 1 − 𝑒𝑥𝑝 −𝛾 𝑥 − 𝑐 2  (13) 

Where 𝑐 is the transition parameter, and 𝛾 > 0. 

 

When the transition function 𝐺 is logistic, the parameter 𝛾 determines the smoothness of the transition 

between the two regimes. When 𝛾 is high, the function 𝐺 approaches an indicator function. In this case, the 

logistic 𝑆𝑇𝐴𝑅(𝑝) model tends to resemble the 𝑇𝐴𝑅(𝑝) model. Conversely, the smaller 𝛾 is, the slower the 

transition between the two regimes. When 𝛾 → 0, the function 𝐺 approaches 1/2, and the model approaches a 

linear autoregressive model 𝐴𝑅(𝑝). 

When the transition function 𝐺 is exponential, as 𝛾 → 0, 𝐺 approaches 0, and as 𝛾 → ∞, 𝐺 approaches 1. 

In these cases, the model behaves like a linear autoregressive model 𝐴𝑅(𝑝). The exponential transition function 

becomes zero at the value 𝑐, i.e., 𝐺(𝑐, 𝛾, 𝑐) = 0. As 𝑥 → ±∞, the transition function 𝐺 approaches 1. 
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3.2.3 Specification Procedure 

To specify a STAR model fitted to the data, we follow the procedure proposed by Teräsvirta (1994): 

1) We specify the most appropriate linear autoregressive model that fits the series of data under study. 

2) We test linearity for different values of the lag parameter 𝑑, and determine the value of 𝑑 if the linearity 

test is rejected. 

3) We choose between the LSTAR and ESTAR models. 

4) We estimate the chosen STAR model. 

 

1) Specification of the Linear Autoregressive Model 

In this step, we specify the most appropriate 𝐴𝑅(𝑝) autoregressive model of order 𝑝 for the series of data 

under investigation. Teräsvirta (1994) suggests determining the lag 𝑝 that minimizes the Akaike Information 

Criterion, denoted as AIC, based on autoregressive 𝐴𝑅(𝑝) models fitted to the data. 

In this paper, we have selected the 𝐴𝑅(𝑝) model whose order 𝑝 minimizes the Akaike Information 

Criterion and exhibits non-autocorrelated residuals. 

 

2) Testing the Null Hypothesis of Linearity against the Alternative of STAR Non-Linearity 

Before applying a non-linear STAR model, we need to validate the non-linearity of the series of data 

under study using appropriate tests. 

The null hypothesis of linearity 𝐻0 can be formulated as the equality of the autoregressive parameters Φ1 

and Φ2 in both regimes of the STAR model (10), i.e., 𝐻0: Φ1 = Φ2. The alternative hypothesis is written as 

𝐻1: Φ1𝑗 ≠ Φ2𝑗   for at least one 𝑗 ∈  0,1, ⋯ , 𝑝 . 

The problem of the linearity test is complicated by the presence of unidentified nuisance parameters 

under the null hypothesis. Informally, the STAR model contains parameters that are not restricted by the null 

hypothesis, but we cannot learn anything about them from the data when the null hypothesis is true. For 

example, the null hypothesis does not restrict the parameters 𝛾 and 𝑐 in the transition function. 

The linearity test can also be formulated differently: 

 
𝐻0

′ : 𝛾 = 0

𝐻1
′ : 𝛾 ≠ 0

  (14) 

Under the null hypothesis 𝐻0
′ , the STAR model (10) is reduced to a linear autoregressive model, and the 

parameter 𝑐 and the parameters Φ1 and Φ2are unidentified. 

Escribano and Jordá (2001) stated that the parameters Φ1 and Φ2can take any values as long as their 

average remains the same. 

The problem of unidentified nuisance parameters under the null hypothesis was initially considered by 

Davies (1987) and occurs in many testing problems. The main consequence of the presence of such nuisance 

parameters is that conventional statistical theory is not available to obtain the asymptotic distribution of test 

statistics. Instead, test statistics tend to have non-standard distributions for which analytical expressions are 

often not available. This implies that critical values must be determined through simulations. 

Due to the identification problem, normal testing procedures such as the likelihood ratio test, Lagrange 

multiplier test, and Wald test will produce undesirable parameter estimates. Instead, Luukonen et al. (1988b) 

suggest approximating the alternative model by adopting a Taylor series expansion of the transition function to 

circumvent the identification problem. 

Testing the linearity hypothesis against the LSTAR non-linearity alternativeLuukkonen et al. (1988a) 

suggest approximating the logistic function 𝐺 𝑦𝑡−𝑑 , 𝛾, 𝑐   by the Taylor formula around 𝛾 = 0 to the order 3: 

𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  = 𝐺 𝑦 𝑡 −𝑑 , 0, 𝑐  +
𝛾

1!
 𝜕𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕𝛾
 
𝛾 =0

+
𝛾 2

2!
 𝜕

2𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 2
 
𝛾 =0

+
𝛾 3

3!
 𝜕

3𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 3
 
𝛾 =0

+ 𝑅 3 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   

where 𝑅 3 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   is the remainder of the Taylor formula to order 3. We have: 

𝐺 𝑦 𝑡 −𝑑 , 0, 𝑐  =
1

2
 (15) 

Calculating the first partial derivative of 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   yields: 
𝜕𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕𝛾
=  𝑦 𝑡 −𝑑 − 𝑐   𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐     1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    

−2
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We deduce: 

 𝜕𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕𝛾
 
𝛾 =0

=
1

4
 𝑦 𝑡 −𝑑 − 𝑐   (16) 

The calculation of the second partial derivative of 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   yields: 

𝜕 2𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 2

=  𝑦 𝑡 −𝑑 − 𝑐   − 𝑦 𝑡 −𝑑 − 𝑐  𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    
−2

+ 2𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐   𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    𝑦 𝑡 −𝑑

− 𝑐   1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    
−3

 ⟺ 

𝜕 2𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 2

=  𝑦 𝑡 −𝑑 − 𝑐  2𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    
−2

.  −1

+ 2𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐    
−1

 

=  𝑦 𝑡 −𝑑 − 𝑐  .
𝜕𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕𝛾
 −1 + 2𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐   . 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐    

We deduce : 

 𝜕
2𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 2
 
𝛾 =0

= 0 (17) 

The calculation of the third partial derivative of 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   yields: 

𝜕 3𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 3

=  𝑦 𝑡 −𝑑 − 𝑐  .  
𝜕 2𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 2
.  −1 + 2𝑒𝑥 𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐   . 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   

+
𝜕𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕𝛾
. 2.  − 𝑦 𝑡 −𝑑 − 𝑐  𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐   𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

+ 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −𝑑 − 𝑐   .
𝜕𝐺  𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕𝛾
   

We deduce : 

 𝜕
3𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  

𝜕 𝛾 3
 
𝛾 =0

= −
1

8
 𝑦 𝑡 −𝑑 − 𝑐  3 (18) 

We deduce the third-order Taylor formula of the logistic transition function: 

𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  =
1

2
+

𝛾

4
 𝑦 𝑡 −𝑑 − 𝑐  −

𝛾 3

48
 𝑦 𝑡 −𝑑 − 𝑐  3 + 𝑅 3 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   (19) 

By replacing the logistic transition function 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   with its Taylor formula in the STAR model 

(10), we obtain: 

𝑦 𝑡 =   𝜙10 +
1

2
 𝜙20 − 𝜙10 −

𝛾 . 𝑐

4
 𝜙20 − 𝜙10 + ⋯ +

𝑐 3𝛾
3

48
 𝜙20 − 𝜙10  

+  𝜙11 +
1

2
 𝜙21 − 𝜙11 −

𝛾 . 𝑐

4
 𝜙21 − 𝜙11 + ⋯ +

𝑐 3𝛾
3

48
 𝜙21 − 𝜙11  . 𝑦 𝑡 −1 + ⋯

+  𝜙1𝑝 +
1

2
 𝜙2𝑝 − 𝜙1𝑝  −

𝛾 . 𝑐

4
 𝜙2𝑝 − 𝜙1𝑝  + ⋯ +

𝑐 3𝛾
3

48
 𝜙2𝑝 − 𝜙1𝑝   . 𝑦 𝑡 −𝑝   
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+   𝜙20 − 𝜙10 +  𝜙21 − 𝜙11 . 𝑦 𝑡 −1
+ ⋯ +  𝜙2𝑝 − 𝜙1𝑝  . 𝑦 𝑡 −𝑝  .  

𝛾

4
−

𝑐 2𝛾
3

16
 . 𝑦

𝑡 −𝑑

+   𝜙20 − 𝜙10 +  𝜙21 − 𝜙11 . 𝑦 𝑡 −1 + ⋯ +  𝜙2𝑝 − 𝜙1𝑝  . 𝑦 𝑡 −𝑝  .
𝑐 𝛾 3

16
. 𝑦

𝑡 −𝑑

2

+   𝜙20 − 𝜙10 +  𝜙21 − 𝜙11 . 𝑦 𝑡 −1 + ⋯ +  𝜙2𝑝 − 𝜙1𝑝  . 𝑦 𝑡 −𝑝  .  −
𝛾 3

48
 𝑦 𝑡 −𝑑

3

+  Φ2 − Φ1 
′𝑍 𝑡 . 𝑅 3 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  + 𝜀 𝑡  

We define for 0 ≤ 𝑗 ≤ 𝑝  : 

𝜓0𝑗 = 𝜙1𝑗 +
1

2
 𝜙2𝑗 − 𝜙1𝑗  −

𝛾 . 𝑐

4
 𝜙2𝑗 − 𝜙1𝑗  + ⋯ +

𝑐 3𝛾
3

48
 𝜙2𝑗 − 𝜙1𝑗   

𝜓1𝑗 =  
𝛾

4
−

𝑐 2𝛾
3

16
  𝜙2𝑗 − 𝜙1𝑗   

𝜓2𝑗 =
𝑐 𝛾 3

16
 𝜙2𝑗 − 𝜙1𝑗   

𝜓3𝑗 = −
𝛾 3

48
 𝜙2𝑗 − 𝜙1𝑗   

(20) 

We define for  0 ≤ 𝑖 ≤ 3: 

𝜓 𝑖
′ =  𝜓 𝑖 0𝜓 𝑖 1 ⋯ 𝜓 𝑖𝑝  ′ 

The auxiliary regression of 𝑦 𝑡  on 𝑍 𝑡 , 𝑍 𝑡 . 𝑦 𝑡 −𝑑 , 𝑍 𝑡 . 𝑦 𝑡 −𝑑
2 , and 𝑍 𝑡 . 𝑦 𝑡 −𝑑

3   is then written as: 

𝑦 𝑡 = 𝜓0
′ 𝑍 𝑡 + 𝜓1

′ 𝑍 𝑡 . 𝑦 𝑡 −𝑑 + 𝜓2
′ 𝑍 𝑡 . 𝑦 𝑡 −𝑑

2 + 𝜓3
′ 𝑍 𝑡 . 𝑦 𝑡 −𝑑

3 + 𝜂 𝑡  (21) 

with : 

𝜂 𝑡 =  Φ2 − Φ1 
′𝑍 𝑡 . 𝑅 3 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  + 𝜀 𝑡  (22) 

𝑍 𝑡 =  1   𝑦 𝑡 −1𝑦 𝑡 −2 ⋯ 𝑦 𝑡 −𝑝  ′ (23) 

Note that the parameters 𝜓0
′ , 𝜓1

′ , 𝜓2
′ , and 𝜓3

′  in the auxiliary regression (21) are functions of the 

parameters Φ1, Φ2, 𝛾  and 𝑐 .  

The terms 𝜓 𝑖 0. 𝑦 𝑡 −𝑑
𝑖   should be excluded from the auxiliary regression (21) to avoid perfect 

multicollinearity.  

The new auxiliary regression of 𝑦 𝑡  on 𝑍 𝑡 , 𝑍 𝑡 . 𝑦 𝑡 −𝑑 , 𝑍 𝑡 . 𝑦 𝑡 −𝑑
2 , and 𝑍 𝑡 . 𝑦 𝑡 −𝑑

3  is then written as: 

𝑦 𝑡 = 𝜓0
′ 𝑍 𝑡 + 𝜓 1

′
𝑍 𝑡 . 𝑦 𝑡 −𝑑 + 𝜓 2

′
𝑍 𝑡 . 𝑦 𝑡 −𝑑

2 + 𝜓 3

′
𝑍 𝑡 . 𝑦 𝑡 −𝑑

3 + 𝜂 𝑡  (24) 

with : 

𝜓 𝑖
′

=  𝜓 𝑖 1𝜓 𝑖 2 ⋯ 𝜓 𝑖𝑝  ′ (25) 

𝑍 𝑡 =  𝑦 𝑡 −1𝑦 𝑡 −2 ⋯ 𝑦 𝑡 −𝑝  ′ (26) 

Under the null hypothesis 𝐻0
′ : 𝛾 = 0, we have 𝑅 3 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐  = 0 and 𝜂 𝑡 = 𝜀 𝑡 . Therefore, the 

remainder 𝑅 3does not affect the properties of the error under the null hypothesis and the asymptotic theory of 

the distribution. 

The null hypothesis 𝐻0
′ : 𝛾 = 0 translates to 𝜓 𝑖 = 0  for 𝑖 = 1,2,3. Consequently, the new null and 

alternative hypotheses are written as: 

 
𝐻0

" : 𝜓 𝑖 = 0 𝑝𝑜𝑢𝑟𝑖 = 1,2,3

𝐻1
" : 𝜓 𝑖 ≠ 0 𝑝𝑜𝑢𝑟𝑎𝑢𝑚𝑜𝑖𝑛𝑠𝑢𝑛𝑖

  (27) 

The linearity can be tested using a Lagrange Multiplier (LM) statistic that follows a standard asymptotic 

Chi-square distribution under the null hypothesis. Under the null hypothesis of linearity, the LM test statistic is 

given by: 

𝐿𝑀 =
𝑇  𝑆𝑆𝑅 0 − 𝑆𝑆𝑅 1 

𝑆𝑆𝑅 0

 (28) 

which follows a 𝜒 2 distribution with 3𝑝  degrees of freedom. Here: 

𝑇 : is the sample size. 

𝑆𝑆𝑅 0 : is the sum of squares of residuals from the linear regression model under the null hypothesis, i.e., 

regressing 𝑦 𝑡  on 𝑍 𝑡 . 
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𝑆𝑆𝑅 1: is the sum of squares of residuals from the LSTAR non-linear regression model, i.e., regressing 𝑦 𝑡  on 

𝑍 𝑡 , 𝑍 𝑡 . 𝑦 𝑡 −𝑑 , 𝑍 𝑡 . 𝑦 𝑡 −𝑑
2 , and 𝑍 𝑡 . 𝑦 𝑡 −𝑑

3 . 

Another version of the LM test based on the F-distribution involves using the statistic: 

𝐿𝑀 =
 𝑆𝑆𝑅 0 − 𝑆𝑆𝑅 1 /(3𝑝 )

𝑆𝑆𝑅 0/ 𝑇 − 4𝑝  
 (29) 

which follows a Fisher distribution with 3𝑝  and 𝑇 − 4𝑝  degrees of freedom. 

During the execution of the LM-type linearity test, the lag parameter 𝑑  is fixed. To determine this lag 

parameter 𝑑 , the LM-type test is performed for different values of 𝑑  in the range 1 ≤ 𝑑 ≤ 𝐷 . If the null 

hypothesis is rejected for at least one value of 𝑑 , then, to determine the appropriate value of 𝑑 , we choose the 

one associated with the smallest p-value. 

 

3) Choice between LSTAR and ESTAR models 

After rejecting the null hypothesis of linearity in favor of STAR-type non-linearity and choosing the lag 

parameter 𝑑 , this step involves choosing between LSTAR and ESTAR models through a sequence of nested null 

hypotheses in the auxiliary regression (24): 

 

𝐻01: 𝜓 3 = 0                             

𝐻02: 𝜓 2 = 0 𝜓 3 = 0              

𝐻03: 𝜓 1 = 0 𝜓 2 =  𝜓 
3

= 0  

  (30) 

Teräsvirta (1994) suggested decision rules for choosing between LSTAR and ESTAR models: 

1. Rejection of hypothesis 𝐻01 implies the acceptance of the LSTAR model. 

2. Rejection of hypothesis 𝐻02 implies the acceptance of the LSTAR model. 

3. Acceptance of hypothesis 𝐻03 after the rejection of hypothesis 𝐻02 implies the choice of the ESTAR 

model. 

Teräsvirta (1994) also proposed a more practical method for choosing between the two models by 

comparing the significance levels of the three Fisher tests; if the p-value of the 𝐻02 test is the smallest among 

the three, we choose the ESTAR model; otherwise, we choose the LSTAR model. 

 

4) Estimation of the STAR Model 

Once the transition variable 𝑦 𝑡 −𝑑  and the transition function 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   have been selected, the 

modeling process's next step is the estimation of parameters in the STAR model. The parameter estimation 

𝜃 =  Φ1
′ Φ2

′ 𝛾𝑐   in the STAR model is performed using the non-linear least squares method: 

𝜃 = Argmin
𝜃

  𝑦 𝑡 − 𝐻 𝑍 𝑡 , 𝜃   

𝑇

𝑡 =1

 (31) 

𝐻 𝑍 𝑡 , 𝜃  = Φ1
′ 𝑍 𝑡 .  1 − 𝐺 𝑠 𝑡 , 𝛾 , 𝑐   + Φ2

′ 𝑍 𝑡 . 𝐺 𝑠 𝑡 , 𝛾 , 𝑐   (32) 

 

4. Empirical results 
4.1 Preliminary data analysis 

4.1.1 Graphical representation of data 

Figures 1 and 2 display the time series of daily closing prices of MASI and the time series of daily 

geometric returns of MASI. 
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Figure 1: Time series of daily closing prices of the 

MASI index 

Figure 2: Time series of daily geometric returns of 

the MASI index 
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4.1.2. Descriptive Statistics 

Table 1 presents the descriptive statistics of the geometric return of the MASI index. This table includes 

the histogram, mean, median, minimum, maximum, standard deviation, skewness, kurtosis, and Jarque-Bera 

statistics. 

 

Table 1: Histogram and descriptive statistics of the geometric returns series of MASI 

0

400

800

1,200

1,600

2,000

-8 -6 -4 -2 0 2 4

Series : GR_MASI

Sample 1/03/2002 8/11/2023

Obs ervations  5392

Mea n       0.022158

Median   0.032449

Maximum  5.305362

Minimum -9.231677

Std. Dev.   0.764316

Skewness   -0.873693

Kurtos is    14.92410

Jarque-Bera  32630.03

Probabi l i ty  0.000000
  
The preceding table shows a negative skewness of -0.87, indicating that the distribution of the geometric 

returns of MASI has a long left tail. The excessively high kurtosis value (14.92 > 3) suggests thick-tailed 

characteristics of the distribution. The elevated value of the Jarque-Bera (JB) statistics implies rejecting the null 

hypothesis of normality. 

Confirmation of the non-normality of the distribution of geometric returns of MASI will be done through 

the quantile-quantile (QQ-Plot) graph that follows. 

 

4.1.3. Normality Test: Quantile-Quantile graph (QQ Plot) 

We use the quantile-quantile graph (QQ-Plot) test to assess the conformity of the geometric return series 

of MASI to a normal distribution. If the empirical distribution and the theoretical (normal) distribution are 

equivalent, the QQ-Plot should align points on a straight line at 45 degrees. Figure 3 below presents the QQ-Plot 

illustrating the empirical distribution of geometric returns of MASI. 
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Figure 3: QQ-Plot of the geometric returns series of the MASIindex 

 

The analysis of Figure 3 reveals that the empirical distribution of the geometric returns series of MASI 

deviates from normality, showing thicker tails than those of a normal distribution. The QQ-Plot does not 

conform to a straight line and adopts an S-shaped form. This observation confirms the non-normality previously 

identified by the Jarque-Bera (JB) statistic. 
 

4.1.4 Non-stationarity Test (Unit Root Test): Augmented Dickey-Fuller Test (ADF) 

Analyzing the previous Figures 1 and 2, we can conclude that the geometric returns series of the MASI 

index appears to be a manifestation of a stationary process. 

The Augmented Dickey-Fuller (ADF) test was applied to the geometric returns series of the MASI index, 

and the results of this test are presented in Table 2. 
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Table 2: Results of the Augmented Dickey-Fuller test applied to the geometric returns series of the 

MASIindex 

Null Hypothesis: GR_MASI has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic - based on SIC, maxlag=32) 

     
   t-Statistic   Prob.* 

     
Augmented Dickey-Fuller test statistic -56.97702  0.0000 

Test critical values: 1% level  -3.959739  

 5% level  -3.410638  

 10% level  -3.127099  

     
*MacKinnon (1996) one-sided p-values.  

      

 

In Table 2, the ADF statistic is evaluated at -56.97702, with an associated p-value of 0.0000. It is 

noteworthy that the statistic is below the critical values at the 1%, 5%, and 10% levels. Therefore, we reject the 

null hypothesis of a unit root, indicating that the geometric returns series of MASI is generated by a stationary 

process. 

 

4.2 Application of the nonlinear STARmodel to the MASIindex 

4.2.1 Specification of the linear autoregressive model 

In this step, we specify a lagged autoregressive 𝐴𝑅 (𝑝 ) model of the most appropriate order 𝑝  for the 

series under investigation. As suggested by Teräsvirta (1994), we choose the lag 𝑝  that minimizes the Akaike 

Information Criterion (AIC) of the autoregressive linear regression of order 𝑝 . We also used the Ljung-Box test 

for the correlation of autocorrelation and partial autocorrelation functions of the 𝐴𝑅 (𝑝 ) models. 

We begin by presenting the results of the Ljung-Box test for serial correlation of autocorrelation and 

partial autocorrelation functions of the geometric returns series of MASI. Table 3 displays the results of this test. 

 

Table 3: Autocorrelation and partial autocorrelation functions of the geometric returns series of MASI 

 
The autocorrelation function shows a peak at lag 2, and the partial autocorrelation function shows a peak 

at lag 1. For the autoregressive model selection, we explored up to an order 𝑝  equal to 3.  

To this end, we estimated the 𝐴𝑅 (1), 𝐴𝑅 (2)and 𝐴𝑅 (3) models. The AIC criteria associated with the 

three models are provided in the following Table 4: 

 

Table 4: Akaike Information Criteria for the 3 estimated models 𝐴𝑅 (1), 𝐴𝑅 (2)and𝐴𝑅 (3) 

 𝐴𝑅 (1) 𝐴𝑅 (2) 𝐴𝑅 (3) 

AIC 2.237442 2.237737 2.237116 

We observe that the 𝐴𝑅 (3)  model has the lowest AIC criterion. Therefore, we choose the 𝐴𝑅 (3) model, 

and its estimation is provided in the following Table 5. 

 

Table 5: Estimation of the Autoregressive Model of Order 3 

Dependent Variable: GR_MASI   

Method: ARMA Maximum Likelihood (OPG - BHHH)  

Sample: 1/03/2002 8/11/2023   

Included observations: 5392   
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Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.022212 0.013745 1.616040 0.1061 

AR(1) 0.246750 0.006931 35.60190 0.0000 

AR(2) 0.016487 0.005782 2.851171 0.0044 

AR(3) -0.031491 0.006828 -4.611952 0.0000 

SIGMASQ 0.547371 0.004075 134.3356 0.0000 
 

 

The Table 6 below displays the results of the Ljung-Box test for autocorrelation and partial 

autocorrelation functionsapplied to the residual series of the estimated autoregressive model of order 3. 

 

Table 6: Results of the Ljung-Box test for the residual series of 𝐴𝑅 (3) 

 
From Table 6, we deduce that the residuals of the autoregressive model of order 3 are non-autocorrelated. 

 

4.2.2 Test of the null hypothesis of linearity and choice between LSTAR and ESTAR models 

We will test linearity for different values of the lag parameter 𝑑  against the alternative of LSTAR-type 

non-linearity by applying the strategy of Luukkonen et al. (1988a), which suggests approximating the logistic 

function 𝐺 𝑦 𝑡 −𝑑 , 𝛾 , 𝑐   by the Taylor series expansion around 𝛾 = 0 up to the 3rd order. 

We estimated several 𝐿𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2  models with 1 ≤ 𝑝 1 ≤ 3 as the order of the linear regime and 

1 ≤ 𝑝 2 ≤ 3  as the order of the non-linear regime. 

We kept only the 𝐿𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2  models whose lag polynomials of both linear and non-linear regimes 

satisfy the following conditions: 

- Both lag polynomials contain the constant term. 

- Both lag polynomials contain at least two lag terms of orders between 1 and 3. 

There are a total of 16 possible configurations. For example, in the model: 

𝑦 𝑡 =  𝜙10 + 𝜙11. 𝑦 𝑡 −1 + 𝜙12. 𝑦 𝑡 −𝑝 + 𝜙13. 𝑦 𝑡 −𝑝  .  1 − 𝐺 𝑠 𝑡 , 𝛾 , 𝑐   

+  𝜙20 + 𝜙21. 𝑦 𝑡 −1 + 𝜙23. 𝑦 𝑡 −3 . 𝐺 𝑠 𝑡 , 𝛾 , 𝑐  + 𝜀 𝑡  

- The first lag polynomial contains 3 lag terms 𝐴𝑅 (1), 𝐴𝑅 (2) and 𝐴𝑅 (3). 

- The second lag polynomial contains 2 lag terms 𝐴𝑅 (1) and 𝐴𝑅 (3). 

We will denote this model as LSTAR C123-C13.The various configurations of the estimated models are 

provided in the following Table 7: 

 

Table 7: Estimated models with different configurations of lag polynomials for both linear and non-linear 

regimes 

LSTARC123-C123 LSTARC123-C12 LSTARC123-C13 LSTARC123-C23 

LSTARC12-C123 LSTARC12-C12 LSTARC12-C13 LSTARC12-C23 

LSTARC13-C123 LSTARC13-C12 LSTARC13-C13 LSTARC13-C23 

LSTARC23-C123 LSTARC23-C12 LSTARC23-C13 LSTARC23-C23 

 

For each model, we selected the optimal lag value𝑑  for the transition variable 𝑦 𝑡 −𝑑 . We kept only the 

LSTAR models whose coefficients of the two lag polynomials and the parameters of the logistic transition 

function are statistically significant. 

We found that only two models satisfy these conditions: the LSTAR C123-C23 model and the LSTAR 

C23-C123 model. The two tables, 8 and 9, below display the estimates of the coefficients of the lag polynomials 
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for both linear and non-linear regimes, the parameters of the logistic transition function, and the values of the 

three information criteria AIC, SC and HQC associated with these two models. 

 

Table 8: Estimation of the model LSTAR C123-C23 

Dependent Variable: GR_MASI   

Method: Smooth Threshold Regression  

Transition function: Logistic   

Sample (adjusted): 1/08/2002 8/11/2023  

Included observations: 5389 after adjustments  

Threshold variable: GR_MASI(-2)  

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
Threshold Variables (linear part) 

     
     C 3.279235 0.502168 6.530153 0.0000 

GR_MASI(-2) 0.900801 0.106784 8.435759 0.0000 

GR_MASI(-3) -0.347778 0.068591 -5.070301 0.0000 

GR_MASI(-1) 0.250626 0.013484 18.58679 0.0000 

     
Threshold Variables (nonlinear part) 

     
C -3.272773 0.503891 -6.495005 0.0000 

GR_MASI(-2) -0.875131 0.106343 -8.229356 0.0000 

GR_MASI(-3) 0.342567 0.071109 4.817509 0.0000 

     
Slopes 

     
SLOPE 3.005118 0.965063 3.113910 0.0019 

     
Thresholds 

     
THRESHOLD -2.588397 0.203235 -12.73597 0.0000 

      

Tableau 9 : Estimation du modèle LSTARC23-C123 

Dependent Variable: GR_MASI   

Method: Smooth Threshold Regression  

Transition function: Logistic   

Sample (adjusted): 1/08/2002 8/11/2023  

Included observations: 5389 after adjustments  

Threshold variable: GR_MASI(-2)  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     Threshold Variables (linear part) 

     
     C 3.187877 0.490355 6.501157 0.0000 

GR_MASI(-2) 0.920972 0.104398 8.821773 0.0000 

GR_MASI(-3) -0.343162 0.070902 -4.839963 0.0000 

     
     Threshold Variables (nonlinear part) 

     
     C -3.180870 0.491503 -6.471723 0.0000 

GR_MASI(-2) -0.900781 0.104321 -8.634748 0.0000 

GR_MASI(-3) 0.337450 0.073378 4.598793 0.0000 

GR_MASI(-1) 0.263700 0.014222 18.54235 0.0000 

     
     Slopes 
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SLOPE 2.956182 0.865138 3.417007 0.0006 

     
     Thresholds 

     
     THRESHOLD -2.636624 0.183024 -14.40593 0.0000 

     
     

 

 

The following Table 10 consolidates the three information criteria: Akaike Information Criterion (AIC), 

Schwarz Criterion (SC), and Hannan-Quinn Criterion (HQC) for the two models, LSTAR C123-C23 and 

LSTAR C23-C123. 

 

 

We observe that the model LSTAR C123-C23 is the model that minimizes all three information criteria. 

We will choose it as the STAR model to be tested against the linear autoregressive model in the linearity test. 

The following Table 11 presents the results of the linearity test and the test for choosing between LSTAR and 

ESTAR. 

 

Table 11: Results of the Linearity Test and the Test for Choosing Between LSTAR and ESTAR 

Smooth Threshold Linearity Tests 

Sample: 1/03/2002 8/11/2023  

Included observations: 5389  

Test for nonlinearity using GR_MASI(-2) as the threshold variable 

Taylor series alternatives: b0 + b1*s [ + b2*s^2 + b3*s^3 + b4*s^4 ] 

    
    Linearity Tests 

Null Hypothesis F-statistic d.f. p-value 

    
    H04:  b1=b2=b3=b4=0 32.07444 (8, 5377) 0.0000 

H03:  b1=b2=b3=0 24.03130 (6, 5379) 0.0000 

H02:  b1=b2=0 24.15503 (4, 5381) 0.0000 

H01:  b1=0 47.60666 (2, 5383) 0.0000 

    
    The H0i test uses the i-th order Taylor expansion (bj=0 for all j>i). 

    
    Teräsvirta Sequential Tests 

Null Hypothesis F-statistic d.f. p-value 

    
    H3:  b3=0 23.38196 (2, 5379) 0.0000 

H2:  b2=0 | b3=0 0.708555 (2, 5381) 0.4924 

H1:  b1=0 | b2=b3=0 47.60666 (2, 5383) 0.0000 

    
    All tests are based on the third-order Taylor expansion (b4=0). 

Linear model is rejected at the 5% level using H03. 

Recommended model: first-order logistic. 

.  Pr(H3) <= Pr(H2)  or  Pr(H1) <= Pr(H2) 

    
    Escribano-Jorda Tests 

Null Hypothesis F-statistic d.f. p-value 

    
    H0L:  b2=b4=0 36.74289 (3, 5377) 0.0000 

H0E:  b1=b3=0 9.229704 (2, 5377) 0.0001 

Table 10: Information Criteria (AIC, SC, HQC) for the modelsLSTAR C123-C23 and C23-C123 

 LSTARC123-C23 LSTARC23-C123 

Akaike info criterion 2.215560 2.215601 

Schwarz criterion 2.226570 2.226610 

Hannan-Quinn criterion 2.219404 2.219445 
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    All tests are based on the fourth-order Taylor expansion. 

Linear model is rejected at the 5% level using H04. 

Recommended model: exponential with nonzero threshold. 

.  Pr(H0L) < Pr(H0E) with Pr(H0E) < .05 
 

 

On Table 11, we observe that the sequential tests by Teravista reject the hypothesis of the linear model at 

a 5% significance level and recommend the LSTAR model over the ESTAR model. Similarly, the Escribano-

Jorda tests reject the hypothesis of the linear model at a 5% significance level but recommend the ESTAR model 

over the LSTAR model. 

As with the estimated LSTAR models, we will estimate several𝐸𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2  models with 1 ≤ 𝑝 1 ≤
3 as the order of the linear regime and 1 ≤ 𝑝 2 ≤ 3 as the order of the non-linear regime. We only kept the 

models 𝐸𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2  whose lag polynomials of both linear and non-linear regimes satisfy the following 

conditions: 

- Both lag polynomials contain the constant term. 

- Both lag polynomials contain at least two lag terms of orders between 1 and 3. 

Similar to the LSTAR models, there are a total of 16 possible configurations for the ESTAR models. 

For each model, we selected the optimal lag value 𝑑  for the transition variable 𝑦 𝑡 −𝑑 . We kept only the 

ESTAR models whose coefficients of the two lag polynomials and the parameters of the logistic transition 

function are statistically significant. 

We found that only three ESTAR models satisfy these conditions: ESTAR C13-C12, ESTAR C23-C123, 

and ESTAR C23-C12. The three tables 12, 13, and 14 below display the estimates of the coefficients of the lag 

polynomials for both linear and non-linear regimes, the parameters of the logistic transition function, and the 

values of the three information criteria AIC, SC, and HQC associated with these three ESTAR models. 

 

Table 12: Estimation of the model ESTAR C13-C12 

Dependent Variable: GR_MASI   

Method: Smooth Threshold Regression  

Transition function: Exponential  

Sample (adjusted): 1/08/2002 8/11/2023  

Included observations: 5389 after adjustments  

Threshold variable chosen: GR_MASI(-2)  

     
Variable Coefficient Std. Error t-Statistic Prob.   

     
Threshold Variables (linear part) 

     
C 0.127881 0.028888 4.426818 0.0000 

GR_MASI(-1) 0.304583 0.030331 10.04188 0.0000 

GR_MASI(-3) -0.029188 0.013585 -2.148622 0.0317 

     
     Threshold Variables (nonlinear part) 

     
C -0.214404 0.042081 -5.095084 0.0000 

GR_MASI(-1) -0.089765 0.039970 -2.245808 0.0248 

GR_MASI(-2) -0.052232 0.021966 -2.377832 0.0174 

     
Slopes 

     
     SLOPE 1.151009 0.497802 2.312182 0.0208 

     
Thresholds 

     
THRESHOLD 0.909902 0.098331 9.253448 0.0000 

      

For this model ESTAR C13-C12, the chosen transition variable is GR_MASI(-2). 
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Table 13: Estimation of the model ESTAR C23-C123 

Dependent Variable: GR_MASI   

Method: Smooth Threshold Regression  

Transition function: Exponential  

Sample (adjusted): 1/08/2002 8/11/2023  

Included observations: 5389 after adjustments  

Threshold variable chosen: GR_MASI(-2)  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     Threshold Variables (linear part) 

     
     C 9.627652 3.428617 2.808028 0.0050 

GR_MASI(-2) 6.097564 2.160881 2.821796 0.0048 

GR_MASI(-3) -0.371555 0.130570 -2.845651 0.0044 

     
Threshold Variables (nonlinear part) 

     
C -9.614251 3.428392 -2.804303 0.0051 

GR_MASI(-2) -6.078776 2.161219 -2.812660 0.0049 

GR_MASI(-3) 0.347945 0.131877 2.638408 0.0084 

GR_MASI(-1) 0.259482 0.013898 18.66993 0.0000 

     
Slopes 

     
SLOPE 35.51427 12.04093 2.949463 0.0032 

     
Thresholds 

     
THRESHOLD -1.587642 0.025083 -63.29657 0.0000 

     
     

 

For this model ESTAR C23-C123, the chosen transition variable is GR_MASI(-2). 

 

Table 14: Estimation of the model ESTAR C23-C12 

Dependent Variable: GR_MASI   

Method: Smooth Threshold Regression  

Transition function: Exponential  

Sample (adjusted): 1/08/2002 8/11/2023  

Included observations: 5389 after adjustments  

Threshold variable: GR_MASI(-1)  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     Threshold Variables (linear part) 

     
     C -8.777471 1.437011 -6.108142 0.0000 

GR_MASI(-2) -3.960493 1.161524 -3.409740 0.0007 

GR_MASI(-3) -0.029982 0.013508 -2.219618 0.0265 

     
     Threshold Variables (nonlinear part) 

     
     C 8.796976 1.436950 6.121979 0.0000 

GR_MASI(-2) 3.976414 1.161792 3.422656 0.0006 

GR_MASI(-1) 0.241141 0.013529 17.82450 0.0000 

     
     Slopes 

     
     SLOPE 26449.72 8982.972 2.944429 0.0032 
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Thresholds 

     
     THRESHOLD -1.400001 0.000890 -1573.216 0.0000 

     
 

 

For this model ESTAR C23-C12, the chosen transition variable is GR_MASI(-1). 

The following Table 15 consolidates the three information criteria: Akaike Information Criterion (AIC), 

Schwarz Criterion (SC), and Hannan-Quinn Criterion (HQC) for the three models, ESTAR C13-C12, ESTAR 

C23-C123 and ESTAR C23-C12. 

 

 

We observe that the model ESTAR C23-C12 is the model that minimizes all three information criteria. 

However, we notice that the transition parameter 𝛾 = 26449.72 has a very high value for this model. It has been 

observed that when 𝛾 → ∞, the exponential transition function approaches 1, and in such cases, the model 

ESTAR C23-C12 behaves like a linear autoregressive model of order 3. 

The transition parameter for the model ESTAR C13-C12 is 𝛾 = 1.151009, and for the model ESTAR 

C23-C123, it is 𝛾 = 35.51427. Both of these models are nonlinear. The model ESTAR C23-C123 is better than 

the model ESTAR C13-C12 in terms of minimizing all three information criteria. 

Now, we will compare the values of the three information criteria for the nonlinear model LSTAR C123-

C23, the linear model ESTAR C23-C12, and the nonlinear model ESTAR C23-C123 (see Table 16 below). 

 

Table 16: Values of the three Information Criteria (AIC, SC, HQC) for the models LSTAR C123-C23, ESTAR 

C23-C123 and ESTAR C23-C12 

 LSTARC123-C23 ESTARC23-C123 ESTARC23-C12 

Akaike info criterion 2.215560 2.229013 2.220998 

Schwarz criterion 2.226570 2.240022 2.230784 

Hannan-Quinn criterion. 2.219404 2.232857 2.224414 

 

As we can see in Table 16, it is the model LSTAR C123-C23 that minimizes all three information criteria. 

For further comparison, we will analyze the three models LSTAR C123-C23, ESTAR C23-C12 and ESTAR C23-

C123 in sections 4.2.3, 4.2.4, and 4.2.5 respectively. 

 

4.2.3 Estimation of the model LSTAR C123-C23 

The selected model LSTAR C123-C23 is expressed as follows: 

𝑦 𝑡 =  𝜙10 + 𝜙11. 𝑦 𝑡 −1 + 𝜙12. 𝑦 𝑡 −2 + 𝜙13. 𝑦 𝑡 −3 .  1 −
1

1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −2 − 𝑐   
 

+  𝜙20 + 𝜙22. 𝑦 𝑡 −2 + 𝜙23. 𝑦 𝑡 −3 .
1

1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −2 − 𝑐   
 

(33) 

or alternatively: 

𝑦 𝑡 =  𝜙10 + 𝜙11. 𝑦 𝑡 −1 + 𝜙12. 𝑦 𝑡 −2 + 𝜙13. 𝑦 𝑡 −3 

+   𝜙20 − 𝜙10 − 𝜙11. 𝑦 𝑡 −1 +  𝜙22 − 𝜙12 . 𝑦 𝑡 −2

+  𝜙23 − 𝜙13 . 𝑦 𝑡 −3 .
1

1 + 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −2 − 𝑐   
 

(34) 

The estimates of the parameters 𝜙1𝑗 , 𝜙2𝑗  for both regimes, the transition parameter γ, and the transition 

threshold 𝑐  of the model LSTAR C123-C23 are provided in the above Table 8. 

Table 15: Information Criteria (AIC, SC, HQC) for the three models ESTAR C13-C12,  ESTAR C23-C123 and  

ESTAR C23-C12 

 ESTAR C13-C12 ESTAR C23-C123 ESTAR  C23-C12 

Akaike info criterion 2.230579 2.229013 2.220998 

Schwarz criterion 2.240365 2.240022 2.230784 

Hannan-Quinn criterion 2.233996 2.232857 2.224414 
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From Table 8, we can observe that the parameters 𝜙1𝑗 , 𝜙2𝑗  for both regimes, the transition parameter 𝛾 , 

and the transition threshold 𝑐  of the model LSTAR C123-C23 are statistically significant at a 1% significance 

level. 

If we substitute the coefficients with their estimated values in the model LSTAR C123-C23, we obtain: 

𝑦 𝑡 =  3.279235 + 0.250626. 𝑦 𝑡 −1 + 0.900801. 𝑦 𝑡 −2 − 0.347778. 𝑦 𝑡 −3 .  1

−
1

1 + 𝑒𝑥𝑝  −3.005118.  𝑦 𝑡 −2 + 2.588397  
 

+  −3.272773 − 0.875131. 𝑦 𝑡 −2

+ 0.342567. 𝑦 𝑡 −3 .
1

1 + 𝑒𝑥𝑝  −3.005118.  𝑦 𝑡 −2 + 2.588397  
 

(35) 

or alternatively: 

𝑦 𝑡 =  3.279235 + 0.250626. 𝑦 𝑡 −1 + 0.900801. 𝑦 𝑡 −2 − 0.347778. 𝑦 𝑡 −3 

+   −3.272773 − 3.279235 − 0.250626. 𝑦 𝑡 −1 +  −0.875131 − 0.900801 . 𝑦 𝑡 −2

+  0.342567 + 0.347778 . 𝑦 𝑡 −3 .
1

1 + 𝑒𝑥𝑝  −3.005118.  𝑦 𝑡 −2 + 2.588397  
 

𝑦 𝑡 =  3.279235 + 0.250626. 𝑦 𝑡 −1 + 0.900801. 𝑦 𝑡 −2 − 0.347778. 𝑦 𝑡 −3 
+  −6,552008 − 0.250626. 𝑦 𝑡 −1 − 1,775932. 𝑦 𝑡 −2

+ 0,690345. 𝑦 𝑡 −3 .
1

1 + 𝑒𝑥𝑝  −3.005118.  𝑦 𝑡 −2 + 2.588397  
 

(36) 

The Figure 4 below displays the graphical representation of the estimated logistic transition function of 

the model LSTAR C123-C23. 

 
Figure 4: Logistic transition function curve of the model LSTAR C123-C23 

The estimated value of 𝛾 = 3.005118 suggests that the transition from one regime to another is quite 

slow, as illustrated in Figure 4. 

Table 17 below shows the p-values of the Ljung-Box test for the residuals series of the estimated model 

LSTAR C123-C23. 

Table 17: Results of the Ljung-Box test applied to the residuals of LSTAR C123-C23 

 
 

The examination of the p-values of the Q-statistics from the Ljung-Box test for serial correlation shows 

that the residuals of the estimated model LSTAR C123-C23 are not autocorrelated. 
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We also applied the Ljung-Box test to the series of squared residuals of the model LSTAR C123-C23 and 

found that the squared residuals are autocorrelated. 

 

4.2.4 Estimation of the model ESTAR C23-C123 

The model ESTAR C23-C123 is expressed as follows: 

𝑦 𝑡 =  𝜙10 + 𝜙12. 𝑦 𝑡 −2 + 𝜙13. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −𝛾  𝑥 − 𝑐  2 

+  𝜙20 + 𝜙21. 𝑦 𝑡 −1 + 𝜙22. 𝑦 𝑡 −2 + 𝜙23. 𝑦 𝑡 −3 .  1 − 𝑒𝑥𝑝  −𝛾  𝑥 − 𝑐  2   
(37) 

or alternatively: 

𝑦 𝑡 =  𝜙10 + 𝜙12. 𝑦 𝑡 −2 + 𝜙13. 𝑦 𝑡 −3 

+   𝜙20 − 𝜙10 + 𝜙21. 𝑦 𝑡 −1 +  𝜙22 − 𝜙12 . 𝑦 𝑡 −2

+  𝜙23 − 𝜙13 . 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −𝛾  𝑥 − 𝑐  2  

(38) 

The estimates of the parameters 𝜙1𝑗 , 𝜙2𝑗  for both regimes, the transition parameter 𝛾 , and the transition 

threshold 𝑐  of the model ESTAR C23-C123 are provided in the above able 13. 

From Table 13, we can observe that the parameters 𝜙1𝑗 , 𝜙2𝑗 for both regimes, the transition parameter 

𝛾 , and the transition threshold 𝑐  of the model ESTAR C23-C123 are statistically significant at a 1% 

significance level. 

If we substitute the coefficients with their estimated values in the model ESTAR C23-C123, we obtain: 

𝑦 𝑡 =  9.627652 + 6.097564. 𝑦 𝑡 −2 − 0.371555. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −35.51427 𝑥 + 1.587642 2 

+  −9.614251 + 0.259482. 𝑦 𝑡 −1 − 6.078776. 𝑦 𝑡 −2 + 0.347945. 𝑦 𝑡 −3 .  1

− 𝑒𝑥𝑝  −35.51427 𝑥 + 1.587642 2   

(39) 

or alternatively: 

𝑦 𝑡 =  9.627652 + 6.097564. 𝑦 𝑡 −2 − 0.371555. 𝑦 𝑡 −3 

+   −9.614251 − 9.627652 + 0.259482. 𝑦 𝑡 −1 +  −6.078776 − 6.097564 . 𝑦 𝑡 −2

+  0.347945 + 0.371555 . 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −35.51427 𝑥 + 1.587642 2  

𝑦 𝑡 =  9.627652 + 6.097564. 𝑦 𝑡 −2 − 0.371555. 𝑦 𝑡 −3 
+  −19,241903 + 0.259482. 𝑦 𝑡 −1 − 12,17634. 𝑦 𝑡 −2

+ 0,7195. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −35.51427 𝑥 + 1.587642 2  

(40) 

The Figure 5 below displays the graphical representation of the estimated exponential transition function 

of the model ESTAR C23-C123. 

 
Figure 5: Curve of the estimated exponential transition function of the model ESTAR C23-C123 

 

Table 18 below displays the p-values of the Ljung-Box test for the residuals series of the estimated model 

ESTAR C23-C123. 

Table 18: Results of the Ljung-Box test applied to the residuals of the model ESTAR C23-C123  
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The examination of the p-values of the Q-statistics from the Ljung-Box test for serial correlation shows 

that the residuals of the estimated modelESTAR C23-C123 are not autocorrelated. 

We also applied the Ljung-Box test to the series of squared residuals and found that the squared residuals 

of the model ESTAR C23-C123 are autocorrelated. 

 

4.2.5 Estimation of the model ESTAR C23-C12 

The model ESTAR C23-C12 is expressed as follows: 

𝑦 𝑡 =  𝜙10 + 𝜙12. 𝑦 𝑡 −2 + 𝜙13. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −𝛾  𝑥 − 𝑐  2 

+  𝜙20 + 𝜙21. 𝑦 𝑡 −1 + 𝜙22. 𝑦 𝑡 −2 .  1 − 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −1 − 𝑐  2   
(41) 

or alternatively: 

𝑦 𝑡 =  𝜙10 + 𝜙12. 𝑦 𝑡 −2 + 𝜙13. 𝑦 𝑡 −3 

+   𝜙20 − 𝜙10 + 𝜙21. 𝑦 𝑡 −1 +  𝜙22 − 𝜙12 . 𝑦 𝑡 −2

− 𝜙13. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −𝛾  𝑦 𝑡 −1 − 𝑐  2  

(42) 

The estimates of the parameters 𝜙1𝑗 , 𝜙2𝑗  for both regimes, the transition parameter 𝛾 , and the transition 

threshold 𝑐  of ESTAR C23-C12 are provided in the above Table 14. 

From Table 14, we can observe that the parameters 𝜙1𝑗 , 𝜙2𝑗  for both regimes, the transition parameter 

𝛾 , and the transition threshold 𝑐  of the model ESTAR C23-C12 are statistically significant at a 1% significance 

level. 

If we substitute the coefficients with their estimated values in the model ESTAR C23-C12, we obtain: 

𝑦 𝑡 =  −8.777471 − 3.960493. 𝑦 𝑡 −2 − 0.029982. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −26449.72 𝑦 𝑡 −1 + 1.400001 2 

+  8.796976 + 0.241141. 𝑦 𝑡 −1 + 3.976414. 𝑦 𝑡 −2 .  1

− 𝑒𝑥𝑝  −26449.72 𝑦 𝑡 −1 + 1.400001 2   

(43) 

or alternatively: 

𝑦 𝑡 =  −8.777471 − 3.960493. 𝑦 𝑡 −2 − 0.029982. 𝑦 𝑡 −3 

+   8.796976 + 8.777471 + 0.241141. 𝑦 𝑡 −1 +  3.976414 + 3.960493 . 𝑦 𝑡 −2

− −0.029982. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −26449.72 𝑦 𝑡 −1 + 1.400001 2  

𝑦 𝑡 =  −8.777471 − 3.960493. 𝑦 𝑡 −2 − 0.029982. 𝑦 𝑡 −3 
+  17,574447 + 0.241141. 𝑦 𝑡 −1 + 7,936907. 𝑦 𝑡 −2

+ 0.029982. 𝑦 𝑡 −3 . 𝑒𝑥𝑝  −26449.72 𝑦 𝑡 −1 + 1.400001 2  

(44) 

The Figure 6 below displays the graphical representation of the estimated exponential transition function 

of the model ESTAR C23-C12. 
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Figure 6: Curve of the estimated exponential transition function of the model ESTAR C23-C12 

We can see clearly that this curve is reduced to 1, and therefore, the model ESTAR C23-C12 behaves like 

a linear autoregressive model of order 3. 

Table 19 below shows the p-values of the Ljung-Box test for the residuals series of the estimated model 

ESTAR C23-C12. 

 

Table 19: Results of the Ljung-Box test applied to the residuals of the model ESTAR C23-C12  

 
The examination of the p-values of the Q-statistics from the Ljung-Box test for serial correlation shows 

that the residuals of the estimated model ESTAR C23-C12 are not autocorrelated. 

We also applied the Ljung-Box test to the series of squared residuals and found that the squared residuals 

of the model ESTAR C23-C12 are autocorrelated. 

 

5. Conclusion 
In this study, we tested the hypothesis of weak-form efficiency in the Moroccan stock market. To do so, 

we analyzed the daily geometric returns series of the MASI index on the Casablanca Stock Exchange from 

03/01/2002 to 15/08/2023, totaling 5393 observations. In this regard, we have applied the Smooth Transition 

Autoregressive (STAR)model to the daily geometric returns series of the MASI index. 

The application of the Augmented Dickey-Fuller test rejected the null hypothesis of a unit root, 

indicating that the series of geometric returns of the MASI follows a stationary process. 

We then initiated the model specification procedure based on Teräsvirta's strategy (1994). In the first 

step, we selected the most appropriate autoregressive model 𝐴𝑅 (𝑝 ) of order 𝑝  for the data series under 

investigation. Following Teräsvirta's suggestion, we chose the lag 𝑝  that minimizes the Akaike Information 

Criterion (AIC) of the autoregressive linear regression of order 𝑝 . We found that the 𝐴𝑅 (3) model is the one 

minimizing the Akaike Information Criterion, and the analysis of the Ljung-Box test showed that the residuals 

of the 𝐴𝑅 (3) model are non-autocorrelated. 

Next, we estimated several 𝐿𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2   models with 1 ≤ 𝑝 1 ≤ 3  as the order of the linear regime 

and 1 ≤ 𝑝 2 ≤ 3as the order of the non-linear regime. We retained only those 𝐿𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2  models where 

the lag polynomials of both linear and non-linear regimes meet the following conditions: 

- Both lag polynomials contain the constant term. 

- Both lag polynomials contain at least two lag monomials of orders between 1 and 3. 
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With these conditions, we had a total of 16 possible configurations. For each model, we selected the 

optimal lag value 𝑑 for the transition variable 𝑦 𝑡 −𝑑 . We only kept the LSTAR models whose coefficients of 

both lag polynomials and logistic transition function parameters are statistically significant. 

We found only two models that meet the conditions: the model LSTAR C123-C23 (Base part: 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐴𝑅 (1) + 𝐴𝑅 (2) + 𝐴𝑅 (3); Alternative part: 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐴𝑅 (2) + 𝐴𝑅 (3)) and the 

model LSTAR C23-C123 (Base part: 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝐴𝑅 (2) + 𝐴𝑅 (3); Alternative part: 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +
𝐴𝑅 (1) + 𝐴𝑅 (2) + 𝐴𝑅 (3)). 

We compared the three Akaike Information Criterion, Schwarz Criterion, and Hannan-Quinn Criterion 

for the two models LSTAR C123-C23 and LSTARC23-C123, and we found that the LSTAR C123-C23 model is 

the one minimizing all three criteria. 

We then applied the linearity test to choose between the STAR model and the linear autoregressive 

model. The Teravista sequential tests rejected the hypothesis of the linear model at a significance level of 5% 

and recommended the LSTAR model instead of the ESTAR model. Similarly, the Escribano-Jorda tests rejected 

the hypothesis of the linear model at a significance level of 5% but recommended the ESTAR model instead of 

the LSTAR model. 

As with the estimated LSTAR models, we estimated 16 𝐸𝑆𝑇𝐴𝑅  𝑝 1, 𝑝 2  models with 1 ≤ 𝑝 1 ≤ 3 as 

the order of the linear regime and 1 ≤ 𝑝 2 ≤ 3 as the order of the non-linear regime. 

We found only three ESTAR models that meet the required conditions, namely the model ESTAR C13-

C12, the model ESTAR C23-C123, and the modelESTAR C23-C12. 

The analysis of the three Akaike Information Criterion, Schwarz Criterion, and Hannan-Quinn Criterion 

for the three ESTAR models revealed that the model ESTAR C23-C12 is the one minimizing all three criteria. 

However, we noticed that the transition parameter for the model ESTAR C23-C12 is 𝛾 = 26449.72, a very high 

value for which the exponential transition function approaches 1. In such cases, the model ESTAR C23-C12 

behaves like a linear autoregressive model of order 3. 

Comparing the three information criteria of the nonlinear model LSTAR C123-C23, the linear model 

ESTAR C23-C12, and the nonlinear model ESTAR C23-C123 revealed that the LSTAR C123-C23 model is the 

one minimizing all three criteria. We selected this model as our choice; however, we still estimated all three 

models for comparison. 

The objective of detecting whether the daily geometric returns series of MASI exhibits nonlinearity has 

been achieved. Indeed, the application of the Smooth Transition Autoregressive (STAR) model has captured 

nonlinearity in the daily geometric returns series of the MASI index over the studied period. This finding leads 

us to conclude that the Moroccan stock market demonstrates inefficiency in its weak-form. 
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