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1. Introduction 
Now a days, weapons are being used around the world. In society, protection and security have become a 

major concern. Weapon detection plays a crucial role in ensuring public safety and security, especially in 

surveillance scenarios. The advancements in deep learning techniques have paved the way for more accurate and 

efficient object detection models, such as Yolov4 (You Only Look Once version 4). Yolov4 is renowned for its 

ability to perform real-time object detection with high precision and recall rates. This study aims to analyze the 

effectiveness of Yolov4 in detecting weapons from images. By leveraging the power of deep neural networks, 

the goal is to develop a robust weapon detection system that can accurately identify potential threats in real-

world surveillance scenarios. The Yolov4 model, with its exceptional speed and accuracy, is well-suited to 

address these challenges and provide efficient weapon detection capabilities. The system involves training 

Yolov4 on the custom datasets specifically created for weapon detection. The datasets include annotated 

surveillance images, where weapons are labeled with bounding boxes to provide ground truth for training and 

evaluation. By training the model on such the datasets, it learns to detect weapons in different contexts. To 

optimize the performance of Yolov4, a comprehensive training process is conducted. This process includes 

hyperparameter tuning, adjusting model architecture parameters, and utilizing data augmentation techniques to 

enhance the model's ability to generalize to unseen weapon instances. The training process is carried out on GPU 

acceleration for efficient model convergence. After training, the performance of the Yolov4 model is evaluated 

on a set of test images that were not used during training. The evaluation focuses on key performance metrics, 

such as precision, recall, and average precision, to assess the model's accuracy in weapon detection. This system 

contributes to the advancement of weapon detection technologies and lays the foundation for implementing 

robust security systems in various domains. 

 

2. Literature Review 
Object detection is a computer vision task aimed at identifying and localizing multiple objects within an 

image or video frame [1]. It involves two primary aspects: accurately classifying object categories and precisely 

defining their spatial extents through bounding boxes. The task typically relies on deep learning models like 

Yolo (You Only Look Once), which employ convolutional neural networks to extract hierarchical features from 

input data. These features are then used to predict object classes and bounding box coordinates simultaneously. 
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Object detection models learn to recognize patterns and features at different scales, enabling them to detect 

objects of varying sizes while leveraging techniques like anchor boxes to enhance localization accuracy [2]. This 

theoretical framework enables automated and efficient object recognition, finding applications across various 

fields, including surveillance, autonomous driving, and image analysis [3], [4]. 

Weapon detection is a crucial field of study with significant applications in security and safety domains. 

Yolo employs an Artificial Neural Network (ANN) methodology for object detection in images. The network 

partitions the image into multiple regions and makes predictions for each region, providing bounding box 

coordinates and corresponding probabilities [5]. These predicted bounding boxes are subsequently compared 

with their associated probabilities.  

Among the existing works on weapon detection, many of them primarily focus on employing complex 

CNN networks for object detection of guns. However, these approaches often overlook the practicality of real-

world deployment [6]. Some algorithms claim to be real-time, but their reliance on expensive GPU or CPU 

machines hinders their scalability for large-scale use. 

The research introduced in gun detection, where the Yolov3 algorithm is utilized and conducted a 

comparative analysis of false positives and false negatives against the Faster RCNN algorithm [7]. To enhance 

the performance, the researchers curated a comprehensive dataset of handguns, encompassing all possible 

angles, which was then merged with the ImageNet dataset. The merged dataset was subsequently employed to 

train the Yolov3 algorithm, leading to improved detection results. 

The researchers conducted a comprehensive comparative analysis between two state-of-the-art models, 

namely Yolov3 and Yolov4, for weapons detection [8]. To facilitate the training process, they curated a 

specialized weapons dataset by collecting images from Google Images and incorporating various assets. The 

images were manually annotated in different formats to meet the requirements of Yolo and other models, such as 

text format and XML format, respectively. Both versions of the models were trained on this extensive weapons 

dataset, and their results were subsequently tested to perform a thorough comparative analysis. 

The author S. Khan et al. incorporates the Yolov5 deep learning architecture and a specialized dataset of 

pistol images [9]. This innovative system aims to detect pistols in real-time video streams and promptly send 

email alerts to the administrator upon a positive detection. Deep learning has revolutionized the field of object 

detection, enabling the development of highly accurate and efficient algorithms to identify and localize objects in 

images and videos [10]. Object detection is a fundamental task in computer vision with numerous practical 

applications, such as surveillance, autonomous vehicles, robotics, and medical imaging. Traditionally, object 

detection relied on handcrafted features and machine learning classifiers. However, deep learning, particularly 

Convolutional Neural Networks (CNNs), has emerged as the dominant approach due to its ability to 

automatically learn hierarchical representations from raw data [11]. You Only Look Once (Yolo) is another 

popular real-time object detection approach that divides the input image into a grid and predicts bounding boxes 

and class probabilities for each grid cell. It provides faster detection but may sacrifice some accuracy compared 

to other methods [12]. Faster R-CNN introduced the concept of region proposal networks (RPNs) to efficiently 

generate candidate regions for objects [13]. This two-stage approach achieves high accuracy with improved 

speed compared to its predecessors. RetinaNet addressed the issue of class imbalance in object detection by 

using a focal loss function. This approach helps focus on hard-to-detect objects, leading to more balanced and 

accurate predictions [14]. 

In Yolov3, the backbone forms the foundational feature extraction architecture, utilizing a Darknet-53 

network to extract hierarchical features from input images [15]. The neck, PANet, plays a pivotal role by fusing 

and enhancing feature representations from various scales, contributing to Yolov3's improved detection accuracy 

across a wide range of object sizes and categories [16]. 

 

3. Overview of the System 
The design of the system is shown in Fig 1. Before feeding an image into a deep neural network for 

object detection, the following step is to preprocess the image. This preprocessing step ensures that the input 

data is in a suitable format for the network's computations. One preprocessing technique involves resizing the 

image to a fixed size, (416x416), which standardizes the input dimensions for the model. Additionally, images 

are normalized by scaling their pixel values to 0 and 1. This normalization aids in stabilizing the training process 

and testing process and improves the model's ability to learn meaningful patterns from the data. 
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Figure 1: Overview of the system 

 

3.1 Preprocessing 

Preprocessing in Yolo (You Only Look Once) refers to the series of steps taken to prepare input data 

(images) before feeding them into the Yolo model for object detection. These steps ensure that the input data is 

in a suitable format and scales for the model's processing. Typical preprocessing steps in Yolo include Resizing, 

Normalization, Data Augmentation, Batching, Label Encoding and Data Type Conversion: Finally, the 

preprocessed data is loaded into the Yolo model for training. 

 

3.2 Object Detection 

Object detection in computer vision involves identifying and localizing objects of interest within an 

image. Convolutional Neural Networks (CNNs) are widely used in object detection tasks. CNNs excel at 

processing grid-like data, such as images, and can effectively learn and extract features for detecting objects. In 

the context of object detection, CNN-based architectures, such as Yolo (You Only Look Once) and Faster R-

CNN (Region-based Convolutional Neural Network), are commonly employed. 

 

3.2.1 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN), is a class of deep neural networks that is widely used for 

computer vision tasks, including image classification, object detection, and image segmentation. CNNs are 

particularly effective in processing grid-like data, such as images, due to their ability to capture spatial 

relationships and local patterns. The main building blocks of a CNN are convolutional layers, which are 

responsible for learning and extracting relevant features from the input data. These layers consist of filters (also 

called kernels) that convolve with the input to produce feature maps. Convolutional layers typically employ 

operations such as convolution, activation functions, and pooling to process the input data. 

 

3.2.2 Yolov4 (You Only Look Once version 4) 

Yolov4 (You Only Look Once version 4) is an advanced object detection algorithm that builds upon the 

success of previous Yolo versions and incorporates several improvements to achieve state-of-the-art 
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performance in terms of accuracy and speed. Yolov4 offers different architectural variants, including Yolov4-

CSP, Yolov4x, and Yolov4-tiny, with varying trade-offs between speed and accuracy.  

In Yolov4 and other deep learning models, "weights" refer to the learned parameters of the model or the 

model's knowledge during the training process. These weights represent the numerical values that adjust the 

behavior of the model's layers and neurons, allowing it to make predictions on new, unseen data. During training, 

the model is optimized to learn these weights by minimizing a defined loss function, typically through techniques 

like gradient descent. The weights capture the patterns, features, and relationships in the training data that are 

relevant for making accurate predictions. 

The batch size determines how many samples are processed in each iteration before updating the model's 

weights. Larger batch sizes can lead to faster convergence, but they may also require more memory resources. 

Max batch refers to the maximum batch size that can be used during the training process. It represents the largest 

number of training examples that can be processed together in a single iteration of training. 

In this system, the value of the max_batch hyperparameter is derived by multiplying 2000 with the 

number of classes within the dataset. Since the Dataset used in this system has 4 classes, the max_batch value 

becomes 8000. At every 1000 iterations of the training process, the model's weights are saved to a designated 

file. These weight files are loaded into the model to initialize its parameters, allowing it to make predictions on 

new images. 

 

3.2.3 Complete Intersection Over Union (CIoU) 

The CIoU metric provides several advantages over traditional IoU. Firstly, it penalizes inaccurate 

predictions with higher precision, as it considers the bounding box regression distance. This property encourages 

the model to make more accurate and precise predictions. Secondly, CIoU has a bounded range [-1, 1], making it 

easier to interpret the quality of the predictions. A value close to 1 indicates a highly accurate prediction, while a 

value close to -1 indicates a poor prediction. Lastly, CIoU has shown to be more robust to small object 

detections, making it suitable for various computer vision tasks, including object detection and instance 

segmentation. 

• Calculate the Intersection over Union (IoU) as usual: 

                        (1) 

• Next, compute the distance between the centers of the predicted and ground truth bounding boxes: 

              (2) 

            (3) 

• Finally, the Complete Intersection over Union (CIoU) is computed as follows: 

    (4) 

• Calculate the smallest enclosing box that encloses both the predicted and ground truth bounding boxes: 

                                         
 (5) 

3.2.4 Non-maximum suppression (NMS) 

Non-maximum suppression (NMS) is a technique commonly used in object detection algorithms, 

including Yolov4, to remove redundant or overlapping bounding box predictions and retain only the most 

confident and accurate detections. When an object detection model generates multiple bounding box predictions 

for the same object instance, these predictions may partially overlap or cover the same region. To avoid 

redundant detections, NMS is applied to select the most relevant bounding box predictions based on their 

confidence scores and the degree of overlap. 

 

The steps in NMS are as follows:  

1) Sort the bounding box predictions based on their confidence scores in descending order. 

2) Initialize an empty list to store the selected bounding boxes. 

3) Iterate over the sorted list of bounding box predictions: 

a) Select the bounding box with the highest confidence score and add it to the selected list. 

b) Calculate the Intersection over Union (IoU) between this selected bounding box and the remaining 

bounding boxes in the list. 
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c) Remove the bounding boxes that have an IoU greater than a predefined threshold value. These 

overlapping bounding boxes are considered redundant. 

4) Repeat steps 3 until all bounding boxes have been processed. 

5) Return the final list of selected bounding boxes, which represents the non-redundant and most confident 

detections. 

 

NMS helps to filter out duplicate detections and retain only the most relevant ones, improving the 

precision and reducing false positives in object detection tasks. By eliminating redundant predictions, NMS 

helps to generate a cleaner output with a reduced number of bounding boxes. The specific implementation of 

NMS may vary depending on the object detection framework or library being used. However, the general 

concept described above apply to most NMS implementations, including those used in Yolov4. 

 

                            
Figure 2. Before Non-maximum suppression and After Non-maximum suppression 

 

4. Dataset Description 
The training dataset and the testing datasets are separated into 80 : 20 ratio of the dataset. The weapon 

images are collected from the open image dataset v6 and Kaggle.com. Some images are collected from publicly 

available websites of some of the paper. The data collection contains the different pixel images with the .jpg, 

.png and .jpeg file extension. There are 6822 total images to detect the weapons in dataset. The dataset includes 

four classes with weapons such as pistol, rifle and knife and not weapon such as dollar. The system involves a 

hyperparameters experiment. There are two variables that used in the system: variable of standard, which serves 

as the system's benchmark as shown in Table 1, and variable input, which serves as an experiment's 

hyperparameter for comparing the performance of the Yolo architecture as shown in Table 2. 

 

Table 1: Standard variables 

Class Filters Network Size Max Batches Steps Batch 

4 27 416x416 8000 6400,7200 64 

 

Table 2: Variable Input Experiment 

Subdivision Data Augmentation 

16 Flipped 

 

5. Experimental Results 
In this dataset, 6822 images are used and total bounding boxes are 7807. There are four classes (1369 

knife objects, 3613 pistol objects, 1948 rifle objects and 877 not_weapon objects) in dataset. This dataset is 

experimented on weight 6000, 7000, 8000, 9000 and 10000 using various pairs of confidence threshold value, 

non-maximum suppression threshold value and CIoU threshold value. The different pairs is defined as follow: 

 

Table 3: Defining Pairs with Different Threshold Values  

Name confidence threshold non-maximum suppression threshold CIoU threshold 

Pair_1 0.25 0.4 0.0 

Pair_2 0.25 0.4 0.1 

Pair_3 0.5 0.4 0.0 

Pair_4 0.5 0.4 0.1 
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In this system, the results are evaluated on mean Average Precision (mAP), Precision, Recall, F1score and 

Accuracy. 

                 (6) 
Where Q is the number of queries in the set and AveP(q) is the average precision (AP) for a given query, 

q. 

Precision =               (7) 

Recall =                 (8) 

              (9) 

   (10) 

 

Table 4: Experimental Results using Pair_1 

Weight TP TN FP FN mAP Accuracy F1 score Recall Precision 

6000 1314 140 140 107 0.64 0.85 0.91 0.92 0.90 

7000 1318 139 131 104 0.65 0.86 0.92 0.93 0.91 

8000 1318 142 129 101 0.64 0.86 0.92 0.93 0.91 

9000 1318 143 128 100 0.64 0.87 0.92 0.93 0.91 

10000 1318 144 123 99 0.65 0.87 0.92 0.93 0.91 

 

According to Table 4, the accuracy using weight 8000, 9000 and 10000 are the same but the accuracy 

using weight 8000 is the best accuracy because the number of true positives are greater than the other weights 

and that of false negatives are less than the other weights. 

 

Table 5: Experimental Results using Pair_2 

Weight TP TN FP FN mAP Accuracy F1 score Recall Precision 

6000 1283 140 171 138 0.61 0.82 0.89 0.90 0.88 

7000 1287 139 162 135 0.62 0.83 0.90 0.90 0.89 

8000 1290 142 157 129 0.62 0.83 0.90 0.91 0.89 

9000 1287 143 159 131 0.62 0.83 0.90 0.91 0.89 

10000 1285 143 157 133 0.62 0.83 0.90 0.91 0.89 

 

According to Table 5, the accuracy using weight 7000, 8000, 9000 and 10000 are the same but the 

accuracy using weight 8000 is the best accuracy because the number of true positives are greater than the other 

weights and that of false negatives are less than the other weights. 

 

Table 6: Experimental Results using Pair_3 

Weight TP TN FP FN mAP Accuracy F1 score Recall Precision 

6000 1260 137 89 164 0.63 0.85 0.91 0.88 0.93 

7000 1285 136 83 140 0.64 0.86 0.92 0.90 0.94 

8000 1285 140 80 136 0.65 0.87 0.92 0.90 0.94 

9000 1283 140 87 138 0.64 0.86 0.92 0.90 0.94 

10000 1284 140 90 137 0.65 0.86 0.92 0.90 0.93 

 

According to Table 6, the accuracy using weight 7000, 9000 and 10000 are the same and the accuracy 

using weight 8000 is the best accuracy because the number of true positives are greater than the other weights 

and that of false negatives are less than the other weights. 
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Table 7: Experimental Results using Pair_4 

Weight TP TN FP FN mAP Accuracy F1 score Recall Precision 

6000 1232 137 117 192 0.61 0.82 0.89 0.87 0.91 

7000 1254 136 114 171 0.62 0.83 0.90 0.88 0.92 

8000 1259 140 106 162 0.62 0.84 0.90 0.89 0.92 

9000 1256 140 114 165 0.62 0.83 0.90 0.88 0.92 

10000 1256 140 118 165 0.62 0.83 0.90 0.88 0.91 

 

According to Table 7, the accuracy using weight 7000, 9000 and 10000 are the same and the accuracy 

using weight 8000 is the best accuracy because the number of true positives are greater than the other weights 

and that of false negatives are less than the other weights. 

 

6. Conclusion 
This system is used for the detection of weapons from custom dataset. The experimental results of the 

system depend on the various confidence thresholds, nms thresholds and ciou thresholds. In this system, various 

confidence threshold (0.25.0.5), nms threshold (0.4) and ciou threshold (0, 0.1) are used. Among them, Pair_1: 

confidence threshold 0.25, nms threshold 0.4 and ciou threshold 0 achieves the best results 0.91 predcision, 0.93 

recall, 0.92 F1 Score and 0.87 accuracy values  were achieved on the above thresholds. The results obtained 

from the evaluation of the weapon detection system using Yolov4 demonstrated its potential for real-time 

application in surveillance environments. The high detection accuracy and real-time performance of the model 

make it a valuable tool for enhancing public safety and security. Fig 3 shows the detected images that are 

resulted by using the above threshold values. 

 

 
Figure 3: Sample detected images using Pair_1 
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