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1. Introduction 
Hydraulic routing employs the full dynamic wave (St. Venant) equations [11]. These are the continuity 

equation and the momentum equation, which take the place of the storage-discharge relationship used in 

hydrologic routing. The equations describe flood wave propagation with respect to distance and time. 

Henderson rewrites the momentum equation as follows: [5] 
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Where,  

Sf = friction slope (frictional forces), in m/m; So = channel bed slope (gravity forces), in m/m; 

2
nd

 term = pressure differential; 3
rd

 term = convective acceleration, in m/sec
2
; Last term = local acceleration, in 

m/sec
2
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The description of each term: 

A (.V/.x) = prism storage, VB (.y/.x) = wedge storage, B (.y/.x) = rate of rise,  

Q = lateral inflow 

The full dynamic wave equations are considered to be the most accurate solution to unsteady, one dimensional 

flow, but are based on the following assumptions used to derive the equations Henderson,:[5] 

1. Velocity is constant and the water surface is horizontal across any channel section. 

2. Flows are gradually varied with hydrostatic pressure prevailing such that vertical acceleration can be 

neglected. 

3. No lateral circulation occurs. 

4. Channel boundaries are considered fixed and therefore not susceptible to erosion or deposition. 

5. Water density is uniform and flow resistance can be described by empirical formulae (Manning, Chezy) [2] 

[3] Solution to the dynamic wave equations can be divided into two categories: approximations of the full 

dynamic wave equations, and the complete solution. 
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to verify the flood mapping and in validating the model. The result of the hydraulic model shows that the value 

of simulated discharge is nearly equal to the actual calculated value of discharge by area velocity method at 

Kurundwad (X-section_10) (0100 hrs on 28th July, 2010, i.e., end of simulation period).  
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The three most common approximations or simplifications to the full dynamic equations are referred to as 

Kinematic, Diffusion, and Quasi-steady models. They assume certain terms of the momentum equation can be 

neglected due to their relative orders of magnitude. The full momentum equation is 
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Kinematic and diffusion models have found wide application and acceptance in the engineering 

community [9]. This acceptance can be attributed to their application to mild and steep slopes with slow rising 

flood waves [1]. Henderson [5] supported this by computing values for each term in the momentum equation. It 

was found that the last three terms of the momentum equation are two orders of magnitude less than the channel 

bed slope value and therefore are negligible for steep slopes. 

 

1.1 Fully Dynamic Wave Routing 

1.1.1 Description  

Complete hydraulic models solve the full Saint Venant equations simultaneously for unsteady flow 

along the length of a channel. They provide the most accurate solutions available for calculating an outflow 

hydrograph while considering the effects of channel storage and wave shape [9]. The models are categorized by 

their numerical solution schemes which include characteristic, finite difference, and finite element methods. 

Characteristic methods were used for early numerical flood routing solutions based on the characteristic form of 

the governing equations. The two partial differential equations are replaced with four ordinary differential 

equations and solved along the characteristic curves [5]. The four equations are commonly solved using explicit 

or implicit finite difference techniques [9] [10] [11]. State that characteristic methods incorporate cumbersome 

interpolations with no added accuracy compared to the finite difference techniques. 

The finite difference method describes each point on a finite grid by the two partial differential equations and 

solves them using either an explicit or implicit numerical solution technique. 

Explicit methods solve the equations point by point in space and time along one time line until all the unknowns 

are evaluated then advance to the next time line [9]. Much research has been performed on this topic [9] [10]. 

Implicit methods simultaneously solve the set of equations for all points along a time line and then proceed to 

the next time line [11]. [9][10][11][12], among others. The implicit method has fewer stability problems and can 

use larger time steps than the explicit method. Finite element methods can be used to solve the Saint Venant 

equations [12]. The method is commonly applied to two-dimensional models. 

 

1.2 Theoretical Calculations For One-Dimensional Flow 

The following paragraphs describe the methodologies used in performing the 1-D flow calculations within 

HEC-RAS.  The basic equations are presented along with discussions of the various terms.  Solution schemes 

for the various equations are described. Discussions are provided as to how the equations should be applied, as 

well as applicable limitations.    

 Steady Flow Water Surface Profiles 

 Unsteady Flow Routing 

 

1.2.1 Steady Flow Water Surface Profiles 

HEC-RAS is currently capable of performing one-dimensional water surface profile calculations for 

steady gradually varied flow in natural or constructed channels. Subcritical, supercritical, and mixed flow 

regime water surface profiles can be calculated. Topics discussed in this section include: equations for basic 

profile calculations; cross section subdivision for conveyance calculations; composite Manning's n for the main 

channel; velocity weighting coefficient alpha; friction loss evaluation; contraction and expansion losses; 

computational procedure; critical depth determination; applications of the momentum equation; and limitations 

of the steady flow model. (Fig.1) depicts the terms of the energy equation representation. 

 

1.2.1.1 Equations for Basic Profile Calculations 

Water surface profiles are computed from one cross section to the next by solving the Energy equation 

with an iterative procedure called the standard step method. The Energy equation is written as follows: 



International 

Journal 
Of Advanced Research in Engineering & Management (IJAREM) 

ISSN: 2456-2033 || PP. 102-107 
 

 
| Vol. 03 | Issue 04 | 2017 | 104 | 

Fig.1 REPRESENTATION OF TERMS IN ENERGY EQUATION 
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Z1, Z2= elevation of the main channel inverts 

Y1, Y2= depth of water at cross sections 

V1, V2= average velocities (total discharge/ total flow area) 

a1, a2= velocity weighting coefficients 

         g = gravitational acceleration, he=energy head loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Friction losses 

The energy loss term he in equation 1 is composed of friction loss hf and form loss ho. Only contraction 

and expansion losses are considered in the geometric form loss term. 

 

he= hf + ho         (2) 

To approximate the transverse distribution of flow of the river is divided into strips having similar hydraulic 

properties in the direction of flow. Each cross section is sub divided into portions that are referred to as 

subsections. Friction loss is calculated as shown below: 
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A1, A2 =  downstream and upstream area, respectively of the cross sectional flow normal to the flow 

direction 

J  =  total number of subsections 

Lj  =  length of the j
th

 strip between subsections 

n  =  Manning’s roughness coefficient 

Q  =  water discharge 

R1, R2 =  downstream and upstream hydraulic radius 

Other losses 

Energy losses due to contractions and expansions are computed by the following equation: 
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Where, CL = loss coefficient for contraction and expansion. If the quantity within the absolute value notation is 

negative, flow is contracting, CL is the coefficient for contraction; if is positive, flow is expanding and CL is the 

coefficient of expansion. In the standard step method for water surface profile computations, calculations 

proceed from the d/s to u/s based upon the reach’s downstream boundary conditions and starting water surface 

elevation. 

 

2. Study Area and Data Sets 
Considering the availability of hydrological, meteorological, soil, and other collateral data, the reaches 

from XS 68 to Karad, XS 223 to Karad and Karad to Kurundwad in Krishna River were selected as the study 

area for the present Dynamic wave modelling study. The following texts narrate the study area with its brief 

characteristics. The cross section details as obtained from Central Water Commission (Upper Krishna Division) 

are marked by the numbers described by Govt of India.  

 
Fig.2 INDEX MAP OF KRISHNA BASIN 

 

In India the Krishna River rises from Western Ghats near Mahabeleshwar in Maharashtra state and 

after traversing a length of 304 Km. in Maharashtra, it enters into Karnataka state. Total length of the river is 

1392 Km. and passes through Maharashtra, Karnataka and Andhra states joins the Bay of Bengal (Fig.2). The 

Krishna basin in Maharashtra is broadly classified in two sub basins viz. Krishna sub-basin and Bhima sub-

basin. In the upper reaches of Krishna River in Maharashtra, rainfall is found to the tune of 4000 to 7000 mm. 

There are 11 Major, 12 Medium and 263 minor dams located in Upper Krishna basin. Total live storage capacity 

of these dams is 7136 Mm
3
. Looking to all these aspects, dams have limited scope in limited flood control. 

Therefore, heavy floods are observed and are always possible in future when there is intensive precipitation in 

all over area of Krishna sub-basin.  

 

 

Study Area 
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2.1 Data sets 

The accuracy of the model depends on the detail and accuracy of the river geometry that is input to the 

model (as well as the choice of appropriate time and distance steps). Input data for each cross section must 

describe channel slope and geometry; over bank storage; natural and man-made constrictions (such as bridges); 

channel and over bank roughness coefficients, and lateral inflows or outflows. In addition each model needs 

upstream and downstream “boundary conditions” – usually a flow hydrograph at the upstream end and some 

form of stage-discharge relationship at the downstream end. 

 

2.1.1 Geometry Data 

The study area consist of geometric data is in the form of a station and elevation. It consist of total 51 

cross section which is a surveyed by central water commission Upper Krishna Division Pune. That describes the 

main channel and bank station. The distance between surveyed cross section varies from 1km to 5km. 

 

2.1.2 Boundary condition 

The simulation period from 27
th

 July 2010, 28thjuly 2010 is constrained by the availability of data to 

prescribe the models boundary condition. The upstream boundary condition at XS 68 and XS 223is given in the 

form of stage/ flow Hydrograph. The downstream boundary condition is represented by a rating curve 

constructed from observed water levels and discharge measurements at kurundwad provided by the Upper 

Krishna Division, Pune. 

 

3. Results and Discussion 
By running an Hydraulic model it gives the all hydraulic parameter for each cross section and water 

surface profile plot of the reach (Fig .3) The result of the hydraulic model shows that the simulated Discharge is 

3803.82 m
3
/s against the actual calculated value of 3847 m

3
/s by area velocity method at Kurundwad (Fig.4) (X-

section_10) (0100 hrs on 28th July, 2010, i.e., end of simulation period). The simulated water level is 534.15m 

against observed value of 534.21 m. 

 
Fig.3 PROFILE PLOT 
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Fig.4 DETAILED CROSS-SECTION OUTPUT TABLE 

 

3.1 Validation of Discharge Using Area Velocity Method 

Area of Kurundwad X-Section at WL 534.395 m on 28
th

 July, 2010 = 2840.654 m
2
 (Measured)  

Avg. Velocity on 28
th

 July, 2010= 1.354 m/sec 

Discharge (Q)   = Area * Velocity=   2840.654 m
2
 X 1.354 m/s= 3847.240 (m³/s) 

The simulated discharge for 28
th

 July is 3804 (m³/s), hence it proved to be in agreement. 

 

4. Conclusion 
This paper presents a methodology and case study of a Dynamic wave routing conducted along Krishna 

reach. The HEC-RAS model gives a accurate result as compare to the conventional method .from the simulated 

discharge and water level we can find out the flood plain for the further study. 
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