

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 27 |

Super Efficiency Analysis: An Application on The Efficiency of

Programming Languages

Kemal Gunduz
1
, Talat Senel

2

*(Department of Statistic, Ondokuz Mayıs University, Turkey)

** (Department of Statistic, Ondokuz Mayıs University, Turkey

1. INTRODUCTION
Any person, community, institution or organization that produces product or provides services will

want to be efficient in the work they do. Efficiency analysis takes an important place in almost every field that

profit-making or non-profit, offers services or direct products, from education to health, from transportation to

tourism, from food to logistics, from textiles to agriculture, from technology to public organizations.

Companies, by making the management of resources of their healthier than it is; can save more, produce more

products with the same amount of resources, reach more customers, provide better quality services and thus they

can develop. If public institutions such as schools and hospitals are considered, the efficient management of

resources will contribute significantly to development and it will increase the quality of the service. For this

purpose, these individuals, companies and organizations should adjust their inputs and outputs well, manage the

production process correctly, identify and correct where they are faulty or missing. To achieve this, they need to

compare themselves with similar decision making units (DMUs). Data Envelopment Analysis (DEA) is

involved here.

DEA is a non-parametric, linear programming-based efficiency analysis method that measures the

relative efficiency of DMUs which have the same purpose, producing the same type of product or providing the

same type of service. DEA can perform at the same time with multiple inputs and multiple outputs which have

same or different units.

DEA classifies the DMUs as fully efficient or inefficient. The basic methods of DEA are not able to

rank fully efficient DMUs among themselves. Fully efficient DMUs can be ranked by taking an efficiency score

between 0 and 1. Inefficient DMUs can fix their shortcomings by taking reference fully efficient DMUs.

Super efficiency (SE) analysis is a method which makes possible to rank fully efficient DMUs among

themselves. In the SE analysis, the efficiency scores of inefficient DMUs do not change. As for fully efficient

DMUs, they take 1 or more values. Thus, fully efficient DMUs can also be ranked.

In this research, programming languages were chosen as the application subject in order to show the

importance of the SE method and how different areas it can be used.

Programming is used in everyday life, in academic fields, in technological development, in health, in

sociability, in art design and in many other fields. The phones themselves and their applications, computers,

games, smart electronic home appliances, ATMs, automatic braking systems of vehicles, TVs, lights with

sensor, and much more work through programming. The programming languages are code sequences with some

basic rules that makes enable us to teach all these working systems to machines.

Abstract: As in every period of history, it is desirable to be efficient while doing a study today too. Thus,

resources can be used in the most appropriate way and maximum earnings can be obtained. These earnings

can be directly financial or they can also be the increase of the quality of services in areas such as education

and health. Data Envelopment Analysis (DEA) and Super Efficiency (SE) are widely used to measure this

efficiency. In this study, DEA and SE are used in an application that focuses on the measurement of

efficiency of programming languages. The 18 commonly used programming languages has been taken as

decision-making units (DMU). By using SE analysis for the 10 DMUs with full efficiency, these fully

efficient DMUs have been ranked. As a result of this ranking, C# has been identified as the most efficient

programming language. The TypeScript programming language has been identified as the last one among

the fully efficient DMUs by having the lowest SE score.

Keywords: Data Envelopment Analysis, Programming, Programming Languages, Super Efficiency

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 28 |

In this case, it is very important to measure the effectiveness of programming languages. This research

has been done in order to contribute to the development of the programming languages by looking from a

different perspective and to show how competent the SE analysis is.

2. METHODOLOGY
In this study, DEA and SE method have been used to measure the relative efficiency between the 18

programming languages.

2.1. Data Envelopment Analysis

Data Envelopment Analysis (DEA), which Farrell laid the foundations in 1957 [1], was became into

the present state by Charnes, Cooper and Rhodes in 1978 [2].The model of Charnes, Cooper, Rhodes (CCR)

accepts the status of Constant Return to Scale (CRS) to measure the technic efficiency. The model, which

accepted as BCC model in the literature, developed by Charnes, Charnes and Cooper in 1984[3], accepts the

status of Variable Return to Scale (VRS) [4].

In the constant returns to scale models, each increase in inputs causes the same ratio increase in

outputs. In the variable returns to scale models, each increase in inputs cause different ratio increase in outputs.

DEA models can be examined in two groups as input-oriented and output-oriented. Input-oriented DEA models

investigate that how the most appropriate input composition to should be in order to produce a certain output

composition in the most efficient way. Output-oriented DEA models investigate that maximum how much

output composition can be obtained with a constant input composition (Charnes et al., 1978) [5].

In this research, input-oriented CCR model has been used. The mathematical model of the input-oriented CCR

model is as follows:

Purpose Function

𝑚𝑎𝑥
 𝑢𝑟𝑘 . 𝑌𝑟𝑘
𝑠
𝑟=1

 𝑣𝑖𝑘 . 𝑋𝑖𝑘
𝑚
𝑖=1

Subject to

 𝑢𝑟𝑘 . 𝑌𝑟𝑗
𝑠
𝑟=1

 𝑣𝑖𝑘 . 𝑋𝑖𝑗
𝑚
𝑖=1

≤ 1 𝑗 = 1, … , 𝑛

𝑢𝑟𝑘 ≥ 𝜀, 𝑟 = 1, … , 𝑠

𝑣𝑖𝑘 ≥ 𝜀, 𝑖 = 1, … ,𝑚

Y: Outputs

X: Inputs

u: weight of output

v:weight of input

s: numbers of outputs,

m: number of inputs,

k: k. DMU,

j: DMU set,

r: Outputs set,

i: Inputs set,

ε : A very small positive value like 10
-6

2.2. Super Efficiency

The Andersen and Petersen Method (AP) is the first ranking method based on the comparison and

ranking of the full efficient DMUs with all other units. This approach facilitates comparison in rankings based

on parametric methods and provides a basis for ranking full efficient DMUs. AP model is described as "Super

Efficiency Model" in the literature. The main idea in this method is to compare the DMU studied with the linear

combinations of all other DMUs. For this purpose, the examined DMU removes from the reference set. Thus,

the fully efficient DMU will provide the largest increase in the inputs while maintaining its efficiency. The

DMU with the highest SE score will rank first place in the ranking. Other DMUs will be ranked from large to

small, according to the SE score they have(Andersen and Petersen, 1993: 1261 - 1264) [6].

The fact the DEA is that being able to rank inefficient DMUs but not being able to rank fully efficient

DMUs causes weakness for analysis in some cases. SE analysis is very effective in eliminating this weakness.

SE analysis adds originality to the research and provides the details that cannot be immediately noticed by basic

DEA methods.

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 29 |

Şimşek T. and Şimşek A.B., in their research that named "Unskilled Employee Selection Within The

Scope Of Social Responsibility" published in 2017, persons who need to be employed from the 25-member

candidate group were identified with DEA. And the employment priority was determined by the SE method. As

can be seen from this example, it is important that to rank the fully efficient DMUs among themselves [7].

2.2.1. Super Efficiency Models and Mathematical Expressions

The main difference of the super efficiency models from the basic DEA models is that the analysis is

performed by subtracting the examined KVB from the reference set. This enables the fully efficient DMUs be

ranked among themselves by taking 1 or more scores. The mathematical expressions of SE models are as

follows:

Input-Oriented CCR SE model

Purpose Function

min 𝜃 − 𝜀 𝑠𝑖
−

𝑚

𝑖=1

− 𝜀 𝑠𝑟
+

𝑠

𝑟=1

𝑖 = 1,… ,𝑚

Subject to

 𝑋𝑖𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 − 𝑠𝑖
− − 𝜃𝑋𝑖𝑘 ≤ 0 𝑗 = 1,… , 𝑛

 𝑌𝑟𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 − 𝑠𝑟
+ − 𝑌𝑟𝑘 ≥ 0 𝑟 = 1,… , 𝑠

𝑠𝑖
−, 𝑠𝑟

+ , 𝜆𝑗 ≥ 0 (𝑗 ≠ 𝑘)

Input-Oriented BCC SE model

Purpose Function

𝑚𝑖𝑛𝜃𝑘 − 𝜀 𝑠𝑖
−

𝑚

𝑖=1

− 𝜀 𝑠𝑟
+

𝑠

𝑟=1

Subject to

 𝑋𝑖𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 − 𝑠𝑖
− − 𝜃𝑘𝑋𝑖𝑘 ≤ 0 𝑖 = 1, … ,𝑚𝑗

= 1,… , 𝑛

 𝑌𝑟𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 − 𝑠𝑟
+ − 𝑌𝑟𝑘 ≥ 0 𝑟 = 1,… , 𝑠

𝑠𝑖
−, 𝑠𝑟

+ , 𝜆𝑗 ≥ 0 (𝑗 ≠ 𝑘)

Output-Oriented CCR SE model

Purpose Function

𝑚𝑎𝑥𝜑 − 𝜀 𝑠𝑖
−

𝑚

𝑖=1

+ 𝜀 𝑠𝑟
+

𝑠

𝑟=1

Subject to

 𝑋𝑖𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 + 𝑠𝑖
− − 𝑋𝑖𝑘 ≤ 0 𝑗 = 1,… , 𝑛𝑖

= 1,… ,𝑚

 𝑌𝑟𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 + 𝑠𝑟
+ − 𝜑𝑌𝑘 ≥ 0 𝑟 = 1,… , 𝑠

𝑠𝑖
−, 𝑠𝑟

+ , 𝜆𝑗 ≥ 0 (𝑗 ≠ 𝑘)

Output-Oriented BCC SE model

Purpose Function

𝑚𝑎𝑥𝜑 − 𝜀 𝑠𝑖
−

𝑚

𝑖=1

+ 𝜀 𝑠𝑟
+

𝑠

𝑟=1

Subject to

 𝑋𝑖𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 + 𝑠𝑖
− − 𝑋𝑖𝑘 ≤ 0 𝑗 = 1, … , 𝑛𝑖 = 1,… ,𝑚

 𝑌𝑟𝑗

𝑛

𝑗=1 𝑗≠𝑘

𝜆𝑗 − 𝑠𝑟
+ − 𝜑𝑌𝑟𝑘 ≥ 0 𝑟 = 1,… , 𝑠

 𝜆𝑗 = 1

𝑛

𝑗=1 𝑗≠𝑘

𝑠𝑖
−, 𝑠𝑟

+ , 𝜆𝑗 ≥ 0 (𝑗 ≠ 𝑘)

s
+
:input slack variable s

-
: output slack variable θk: input efficiency 𝜑: output efficiency

λ: the efficient combination weight of DMUs

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 30 |

3. MATERIAL
The selection of the programming languages used in the research, the determination of the inputs and

outputs, and the application itself have been described in this section.

3.1. Decision Making Units

It has been decided to use the programming languages which have the highest number of stars on

Github and which that most searched in popular search engines according to TIOBE index, as DMUs in this

research. For this purpose, the programming languages, which are among the first 50 languages in the two lists

and which do not interfere with the collection of the input and output data, have been selected. As a result, the

following 18 programming languages have been designated as DMUs.

Table 3.1. Decision Making Units

Decision Making Units- Programming Languages

C# Groovy Kotlin Perl R Scala

Dart Java Lua PHP Ruby Swift

Go JavaScript Objective-C Python Rust TypeScript

The most widely accepted situation in determining the number of DMUs in the literature is that the

DMU number is at least 2 times the number of inputs + outputs. In this research at least 12 DMUs have been

required because of using 4 inputs and 2 outputs. Considering this situation, to choose 18 DMUs is healthy

enough for the research.

3.2. Inputs

A large part of the input data has been obtained from Github.com [8]. Github; At a high level, is a

cloud-based service and website that enables more than 31 million programmers from all over the world to store

and manage their code, to make version control and collaborate with each [9]. As input; repositories, commits,

contributors and users have been determined. Since Github is a very active website, the data belong to the inputs

are constantly being changed. Input data used in this research were collected on May 7.

Repositories: They are the virtual space where programmers can store the codes they use, present to other users,

manage any changes to their codes. They're some sort of code library. Therefore, they play an important role in

the efficiency of a programming language. The input data is based on the number of repositories that have

received at least 1 star by users.

Commits: It is the number of operations such as adding-removing, modifying, and saving the code on the code

sequence of a language during a project and development. The high number of transactions does not necessarily

mean that the language is used very much, but it is parallel.

Contributors: It is the number of people contributing to the development of a programming language from its

establishment to the present. Some programming languages present themselves as open source, and if they come

with an important suggestion, they allow every programmer around the world to contribute to the development

of the language. On the other hand, some programming languages only provide this development with their own

developers.

Users: It indicates the number of developers using the language examined on Github. Not every user has to be

an expert on the language in question.

The input data obtained are shown in Table 3.2.

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 31 |

Table 3.2. Inputs

DMUs- Programming Language

INPUTS

Repositories Commits Contributors Users

C# 112176 668 73 591528

Dart 7157 63568 218 7037

Go 18918 40211 1319 112245

Groovy 6310 15831 274 59982

Java 297803 54737 264 2120728

JavaScript 601370 55761 314 2079547

Kotlin 14597 54583 313 23616

Lua 17490 5077 3 51471

Objective-C 77591 55029 61 176896

Perl 21660 69768 445 30386

PHP 181839 112510 628 737650

Python 384612 103975 840 1301103

R 23371 53743 79 186056

Ruby 138179 55029 61 418545

Rust 18958 93017 2361 13696

Scala 20972 32984 431 37008

Swift 42264 86324 684 113840

TypeScript 45754 27475 385 137224

The R programming language has been stated the "Contributors" data on Github as 0 (zero). However,

each programming language needs at least 1 developer, ie contributors who contribute to the development of the

language. Therefore, in order to reach the actual data, the number of the persons who stated that they contributed

to the development of the language on the official web site of the R programming language have been counted

as 79 [10].

The data of the "Commits" and "Contributors” of the Java programming language could not obtained

from Github's profile. However, the necessary data has been collected from Github based on Open JDK, the

largest free and open source platform of Java programming language.

3.3. Outputs

Github star ratings and the TIOBE index have been determined as the outputs.

Github star ratings: The level of stars received by a programming language is an indicator that how much the

programming language is liked, useful and has potencial to be useful in the future. So, it is a evaluation method

for programmers on Github. The Github percentages used in this research are the first quarter data of 2019,

which has been collected from https://madnight.github.io/githut/#/stars/2019/1 [11]based on the Githut 2.0

project. Githut 2.0is a project designed to follow the development of Github. Githut shows Github data in

percentages.

TIOBE index: The TIOBE Programming Community index is an indicator of the popularity of programming

languages. The index is updated once a month. The ratings are based on the number of skilled engineers world-

wide, courses and third party vendors. Popular search engines such as Google, Bing, Yahoo!, Wikipedia,

Amazon, YouTube and Baidu are used to calculate the ratings. It is important to note that the TIOBE index is

not about the best programming language or the language in which most lines of code have been written [12]

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 32 |

The TIOBE index data used in this study belongs to April 2019.The output data of the selected DMUs

are given in Table 3.3.

Table 3.3. Outputs

DMU – Programming Language
OUTPUTS

Github Star Ratings TIOBE Index Ratings

C# 3,53 3,515

Dart 0,216 0,511

Go 9,172 1,009

Groovy 0,179 0,932

Java 9,894 15,035

JavaScript 26,627 2,507

Kotlin 0,807 0,337

Lua 0,393 0,395

Objective-C 1,866 1,505

Perl 0,254 1,269

PHP 5,617 2,239

Python 14,197 8,166

R 0,116 1,181

Ruby 2,413 1,277

Rust 0,826 0,342

Scala 0,545 0,376

Swift 2,796 0,978

TypeScript 4,004 0,196

4. RESULTS
In order to perform SE analysis, it is necessary to find fully efficient DMUs. For this purpose, input-

oriented CCR method has been performed in the first part of the analysis. The findings have been presented in

Table 4.1.

Table 4.1. Input Oriented CCR Analysis Findings

DMU
Efficiency

Score
Reference Set

Number of

References

C# 1 - 1

Dart 1 - 3

Go 1 - 7

Groovy 1 - 2

Java 1 - 3

JavaScript 1 - 3

Kotlin 0,630904
Dart(0.457253); Go(0.073236); Objective-

C(0.019567)
-

Lua 1 - 3

Objective-

C
1 - 3

Perl 1 - 2

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 33 |

PHP 0,576927
Go(0.239498); Java(0.064837);

JavaScript(0.072992); Lua(2.125409)
-

Python 0,955737
C#(0.488465); Go(0.531702); JavaScript(0.070996);

Lua(14.517902)
-

R 0,899386 Groovy(0.195293); Java(0.066444) -

Ruby 0,574563
Go(0.004354); JavaScript(0.043796);

Lua(2.427160); Objective-C(0.135603)
-

Rust 0,903402 Dart(0.515421); Go(0.077919) -

Scala 0,482176 Go(0.052462); Groovy(0.112039); Perl(0.172297) -

Swift 0,691057
Dart(0.484946); Go(0.239831); Java(0.001049);

Objective-C(0.247054); Perl(0.079282)
-

TypeScript 1 - 0

When Table 4.1 was examined, 10 out of 18 DMUs (C #, Dart, Go, Groovy, Java, JavaScript, Lua,

Ojective-C, Perl, TypeScript) have been found efficient with 1 efficiency score. Other DMUs are inefficient.

The "Number of References" column shows that how many times a fully efficient DMU has been referenced.

Scala is the DMU with the lowest efficiency score by 0,482176.Go has been the most referenced DMU with 7

times. Although TypeScript is a fully efficient DMU, it has not been taken reference by any inefficient DMU.

When Table 4.1 is examined, it is seen that 55,56% of DMUs are fully efficient. Since this percentage

is very high, it is difficult to determine which programming language uses the resources more efficiency. The

SE method is used to resolve this issue. Table 4.2 shows the findings of Super Efficiency analysis.

Table 4.2. Super Efficiency Analysis Findings

DMU
Efficiency

Score

Super

Efficiency

Score

Super Efficiency Reference Set

Super Efficiency –

Number Of

References

C# 1 22,558192 Java(0.225664); JavaScript(0.048720) 3

Dart 1 1,869982
Go(0.004222); Perl(0.372338);

Rust(0.100126)
1

Go 1 5,676917 Groovy(0.606584); TypeScript(2.263592) 4

Groovy 1 2,605537 Java(0.012945); Perl(0.581064) 3

Java 1 1,535425
C#(3.760372); Groovy(0.043854);

R(1.504166)
3

JavaScript 1 1,904921
C#(5.043708); Lua(17.775517);

TypeScript(0.458774)
4

Kotlin 0,630904 0,630904
Dart(0.457253); Go(0.073236); Objective-

C(0.019567)
-

Lua 1 2,723083 C#(0.109347); Java(0.000708) 3

Objective-

C
1 1,111707

Go(0.042821); JavaScript(0.000781);

Lua(3.695785)
0

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 34 |

Perl 1 1,451877 Dart(1.452760); Groovy(0.565064) 2

PHP 0,576927 0,576927
Go(0.239498); Java(0.064837);

JavaScript(0.072992); Lua(2.125409)
-

Python 0,955737 0,955737
C#(0.488465); Go(0.531702);

JavaScript(0.070996); Lua(14.517902)
-

R 0,899386 0,899386 Groovy(0.195293); Java(0.066444) -

Ruby 0,574563 0,574563
Go(0.004354); JavaScript(0.043796);

Lua(2.427160); Objective-C(0.135603)
-

Rust 0,903402 0,903402 Dart(0.515421); Go(0.077919) -

Scala 0,482176 0,482176
Go(0.052462); Groovy(0.112039);

Perl(0.172297)
-

Swift 0,691057 0,691057

Dart(0.484946); Go(0.239831);

Java(0.001049); Objective-C(0.247054);

Perl(0.079282)
-

TypeScript 1 1,021158 Go(0.285693); JavaScript(0.051963) 2

When Table 4.2 is examined, it has seen that the SE scores of the fully efficient DMUs are higher than

1 and the efficiency scores of the inefficient DMUs are the same as those in the input-oriented CCR analysis. As

SE scores increase, the efficiency of DMUs is increasing. In this case, the most efficient DMU is the C#

programming language with the score of 22,558192 SE. After the C# programming language, the Go

programming language comes with the score of 5,676917 SE. The TypeScript programming language is the last

in the SE ranking with the score of 1.021158 SE.

As a result of the SE analysis, it is seen that the most frequently referenced DMUs are Go and

JavaScript by 4 times. Although it has not been taken as reference by any DMUs in the CCR analysis,

TypeScript has been taken as a reference by Go and JavaScript in the SE analysis. C#, which the most efficient

DMU, has been shown 3 times as a reference by fully efficient DMUs.

5. CONCLUSION
In this research, relative efficiency between the 18 commonly used programming languages has been

measured by DEA and SE. At the end of DEA, 10 fully efficient DMUs have been found. All of these fully

efficient DMUs have been taken 1 efficiency score. Therefore, they could not be ranked among themselves.

Moreover, this situation has been prevented the determination of the most efficient DMU. SE method has been

needed in this part of the research. The fully efficient DMUs have been ranked among themselves with SE

method. The SE scores and rankings of the programming languages are as follows:

Table 5.1. Super Efficiency Ranking

DMU Super Effiency Score Ranking

C# 22,558192 1

Go 5,676917 2

Lua 2,723083 3

Groovy 2,605537 4

JavaScript 1,904921 5

Dart 1,869982 6

Java 1,535425 7

Perl 1,451877 8

Objective-C 1,111707 9

TypeScript 1,021158 10

International

Journal
of Advanced Research in Engineering& Management (IJAREM)

ISSN: 2456-2033 || PP. 27-35

| Vol. 05 | Issue 05 | 2019 | 35 |

The programming language that used its resources most efficient, according to this ranking is C#. This

research has been showed that the SE method has an important place in efficiency measurement. In addition, the

efficiency of programming languages has been viewed from a different perspective. In the future, with using

DEA and SE, new findings regarding programming languages can be achieved by expanding or modifying the

input and output sets in this research.

REFERENCES
[1]. M. J. Farrell, The Measurement of Productive Efficiency, Journal of the Royal Statistical Society, 120,

1957, 253-290.

[2]. Charnes A. Charnes, W.W. Cooper, A.Y. Lewin, L.M. Seiford, Data Envelopment Analysis: Theory,

Methodology and Applications (Kluwer Academic Publisher, Boston, 1994)

[3]. R. D. Banker, A. Charnes, W. W. Cooper, Models for Estimation of Technical and Scale In effciencies

in Data Envelopment Analysis, Manage. Sci. 30, 1984, 1078-1092

[4]. O.R. Yolalan, İşletmeler Arası Göreli Etkinlik Ölçümü (MPM Yayınları, No: 483, Ankara, 1993)

[5]. Charnes, A., Cooper, W.W. ve Rhodes, E. “Measuring the Efficiency of Decision Making Units”,

European Journal of Operational Research, Vol.: 2, No: 6, 1978, 429-444.

[6]. P. Andersen, N.C. Petersen, A Procedure for Ranking Efficient Units in Data Envelopment

Analysis, Management Science, 39, 1993, 1261-1264.

[7]. T. Şimşek, A.B. Şimşek, Sosyal Sorumluluk Kapsamında Vasıfsız Çalışan Seçimi, Gazi İktisat ve

İşletme Dergisi, 3(2): 2017, 1-18.

[8]. https://github.com/

[9]. https://kinsta.com/knowledgebase/what-is-github/

[10]. https://www.r-project.org/contributors.html

[11]. https://madnight.github.io/githut/#/stars/2019/1

[12]. https://www.tiobe.com/tiobe-index

