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I. THE INTRODUCTION 
Consider the nonlinear constrained optimization problem: 

( )P    

min ( )

. . ( ) 0 , 1,2, ,j

f x

s t g x j m  
 

Where 
, : , 1,2, ,n

jf g R R j m  
 is a continuously differentiable function. 

Let 0F  be the set of feasible solutions, i.e 0 { ( ) 0, }1,2, ,j

nx g xF R j m    
 

We assume that 0F  is non empty, and a value function that is often used to solve such problems is the 

1l
exact penalty function. It was first proposed by Zangwill

[1] 
and has the following form: 

                                    
1

1

( , ) ( ) max{ ( ),0}
m

j
j

x f x g xF  


  
        （1.1）                                                                                    

Where 0  penalty parameter. The constrained optimization problem can be transformed into an 

unconstrained optimization problem by 1l
exact penalty function:  

                           
( )p    

1min ( , )

. . n

x

s t x

F

R




   

Sometimes ,we only need to obtain an approximate solution of problem ( )P ,so smoothing approximation of 

the exact penalty function becomes one of the methods to solve this problem. Such methods have appeared in the 

literature such as Zang [2], Beatal and Teboulle [3]. It has been used by Auslender, Cominetti and Haddou [4] to 

study convex programming problems and linear programming problems, and Gonzaga and Castillo [5] to study 

nonlinear programming problems. Similarly, Chen and Mangasarian [6,7], Z. Q. Meng[8] proposed two different 

smoothing penalty functions for the bottom expression. 

                             
2

1

( , ) ( ) max{ ( ),0}
m

j
i

x f x g xF  


  
                 （1.2） 

In Pinar and Zenios [9],a linear quadratic smoothing approximation penalty function is presented for 

convex programming problems, but such functions do not have quadratic continuous differentiability. We consider 

another smooth method to approximate the exact penalty function 1( , )xF  . The approximation function given by us 

Abstract: The exact penalty function commonly used in the solution of nonlinear programming problems has a 

significant disadvantage of non-smoothness, which hinders the use of fast and effective minimization algorithms, and 

may cause some numerical instability. Therefore, this paper consider a method to smoothly approximate exact penalty 

function A, and gives the error estimation among smoothing penalty problem, the problem of nonsmooth penalty and 

the optimal objective function value of the original problem.  On the basis of the given smoothing function, an 

algorithm for calculating the approximate optimal solution of the problem is proposed and the convergence of the 

algorithm is given. 
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for 1( , )xF 
is quadratic continuous differentiable, so we can combine Newton type method to solve the nonlinear 

constrained optimization problem.  

In the second part, a method of smooth approximation of the exact penalty function (1.1) of 1l
 is proposed 

and its error analysis is given. In the third part, the algorithm for calculating the approximate optimal solution of 

problem is presented based on the given smoothing function, and the convergence of the algorithm is given.  

 

II. A SMOOTHING PENALTY FUNCTION 

Given 0  , define a function ( )P t :   

                                              

3

2

2

0, 0

( ) ,
6

4
,

2 3

if t

t
P t if t

t if t
t

 



 













  

  

 

 0

 
 

If ( ) max{ ,0}P t t t  . It's easy to prove 0
lim ( ) ( )P t P t
 


 

In addition, 0  , ( )P t  are twice continuously differentiable with respect to t . Actually, we can get 
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0, 0
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P t if t

if t
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0, 0
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t
P t if t
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 0

 
           

Notice that 
( ( )) max{ ( ),0}, 1,2, ,j jP g x g x j m  

. Let's think about the penalty function for ( )P  

1

( , , ) ( ) ( ( ))
m

j
j

x f x P g xF   


  
                                        （2.1） 

Where 0   is the penalty parameter,  

                                                       
( )Ip

      
( , , )min

nx R
xF  

                             

Since 
1

0
lim ( , , ) ( , )F x F x


  



 , for any 


, let's first study the relationship between 

( )p  and 
( )Ip

 . 

Lemma 2.1 For any given 
nx R , and 

nx R , 
1

4

3
0 ( , ) ( , , ) mF x F x     

.  

Proof: according to the definition of 
( )P t , we can get 

4
0 ( ) ( )

3
P t P t   

 Then for any 

nx R ,

4
0 ( ( )) ( ( )) , 1,2, ,

3
j jP g x P g x j m     

,So     

1 1

4
0 ( ( )) ( ( ))

3

m m

j j

j j

P g x P g x m 
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So, 
1

4

3
0 ( , ) ( , , ) mF x F x     

                         

A direct consequence of Lemma 2.1 is as follows: 

 

Theorem 2.1 Let 
{ } 0j 

 be a sequence of positive numbers and assume that 
jx  is a solution to 

( , , )min
n j

x R
xF  

 . For some 0  , let x  be a convergence point of sequence { }jx , then x  is an optimal 

solution to 
1
( , )min

nx R
xF 

 . 

Theorem 2.2 Let 
*x  be an optimal solution of 

( )p  and 
nRx  be an optimal solution of 

( )Ip
 , then 

*

1

4

3
0 ( , ) ( , , ) mF x F x     

 

Definition 2.1 
nx R   is called a feasible solution of    or a solution of    if 

( ) , 1,2, ,j x j mg    
. Under this definition, the following results are obtained. 

Theorem 2.3 Let 
*x  be an optimal solution of 

( )p  and 
nRx  be an optimal solution of 

( )Ip
 . 

Further, if 
*x  is feasible for ( )P  and x  is feasible for ( )P   , then 

* 3

2
0 ( ) ( ) mf x f x   

. 

 

Proof: Since x  is feasible for ( )P   , then 
3 2

2
1 ( : 0 ( ) ) ( : ( ) )

( : 0 ( ) ) ( : ( ) )

( ) 4
( ( )) ( ( ) )

6 32 ( )

6 6

1

6

j j

j j

m
j

j j

j j g x j g x j

j g x j g x

g x
P g x g x

g x

m



 

 






 



   

  

   

 



  

 

     （2.2） 

Since 
*x  is an optimal solution to ( )P , we have 

*

1

( ( )) 0
m

j
j

P g x



. 

* *

1 1

4
)

3
0 ( ) ( ( )) ( ( ) ( ( ))

m m

j j
j j

x mf x P g x f x P g  
 

    
 

* *

1 1

4

3
( ( )) ( ) ( ) ( ( ))

m m

j j
j j

x mP g x f x f x P g  
 

   
 

Therefore, 

* 3

2
0 ( ) ( ) mf x f x   

 can be obtained from (2.2)                      

Theorem 2.1 and Theorem 2.2 prove that an approximate solution of  
( )Ip

  is also an approximate solution 

of
( )p ,When the error  is sufficiently small, according to Theorem 2.3,if the approximate optimal solution 

  of
( )Ip

  is feasible, an approximate optimal solution of
( )Ip

 is also an approximate optimal solution of ( )P . 
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III. APPROXIMATION ALGORITHM 

For
nx R

, define 
0( ) { ( ) 0, 1,2, , },

( ) { ( ) , 1,2, , },

( ) { ( ) , 1,2, , }.

j

j

j

x j g x j m

x j g x j m

x j g x j m

J

J

J













  

  

  






                                           （3.1） 

Consider the following algorithm: 

Algorithm A  

Step 1 Given 
0

0, 0, 0x   
 and 0 0 

, let 0k   go to step 2; 

Step 2 Calculate 
( , , )argmin

n k k
k

x R
F xx  




；                                   

Step 3 If 
kx  for ( )P   , then stop, we get the approximate optimal solution

kx  of ( )P , or 

1 1

1
2 ,

2
k k k k     

, and 1k k  , turn to step 2. 

Note: For this algorithm, if k  , then the sequence
{ }k  approaches 0  and 

{ }k  approaches  .If  

this algorithm does not terminate in finite steps, the following results can be obtained under appropriate conditions:  

 

Theorem 3.1 Suppose that ( )f x  is enforced on 
nR , that is, 

lim ( )
x

f x


 
. Let 

{ }kx
 be the sequence 

generated by algorithm A. Assuming 
{ ( , , )}k

k kF x  
 is bounded, then 

{ }kx
 is bounded and any limit point 

*x  

of { }kx  is feasible, and there exists 0  , and 
0, 1,2, ,j j m   

, such that 

0 *

* *

( )

( ) ( ) 0j j

j J x

f x g x 


   
                                         （3.2） 

Proof: First, let's prove that { }kx  is bounded. By assumption, there exist real numbers L  that makes 

( , , ), 0,1,2,k
k kL F x k   

 

Suppose { }kx  is unbounded. Let's assume that 
kx 

, when k  , then 

( ), 0,1,2,kL f x k    contradicts with the assumption that ( )f x  on 
nR  is enforced.  

Let's prove that any limit point of { }kx  is a member of 0F
, without loss of generality, assuming 

*lim k

k
x x




. Assuming 
*

0x F
, then there exists {1, , }j m   which makes 

*( ( )) 0jP g x  
 or 

*( ) 0jg x  
, and notice that jg

, 1, ,j m  ( , , )( 1,2, )k
k k

F x k   
 are continuous. 

3 2

2
( ) ( )

( ) 4
( ( ) )

6 32 ( )
( , , ) ( )

k k

k
jk k k

j kk
jkj J x j J x

k
k k

g x
g x

g x
F x f x

 





 

 




 

     
   （3.3） 

If k  , then for k , the set {1, , }m  is nonempty. Since {1, , }m  is a finite set, there exists 

0 {1, , }j m 
 and a subset K N  such that for any sufficiently large 0

, ( )k

jk K g x  
. According to 

(3.3), 
( , , )k

k kF x   
 is a bounded contradiction to assumption 

{ ( , , )}k
k kF x  

. 

Now prove (3.2) was set up, according to the step 2, know 
( , , ) 0k

k kF x   
, i.e., 

2 2

2 2

( ) ( )

( )
(1 )

2 2 ( )
( ) ( ) ( ) 0

k k

k k

k

jk k
k k k

k jj J x j J x

k k
j j

g x

g x
f x g x g x

 




 

 



 

      
 （3.4） 

For 1,2,k  ，

2 2

2 2
( ) ( )

( )
1 (1 )

2 2 ( )k k

k k

k
j k

k k k k
jkj J x j J x

g x

g x
 


  

 



 

    
,so

0k 
. 
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From（3.4），we can get 
2

2 2

2

( ) ( )

(1 )
( ) 2 ( )1

2
( ) ( ) ( ) 0

k k

k k

k
kk k

k j jk

k k k kj J x j J x

k k
j j

g x g x
f x g x g x

 






    



 



     
 

Assuming                  

2

2

1
, ,

( )
( ),

2
k k k

j

k
k

k
jk

k k

g x
j J x






 


  

 

                          

2

2

,

(1 )
2 ( )

( ),k k

j k

k
k k

j

k

g x
j J x











 
( ),0, {1, , }\ ( ) ( )k k

k k

k
j j m J x J x      

 

then                  1

1, 0, {1, , }, 0,1,2,k k k
j j

m

j

j m k 


      

 

When k  , we have 
0, 0, {1, , }k k

j j j m         
, and 

* *

1

0,( ) ( )k

j j

m

j

f x g x


  
1

1j

m

j




 
 

For 
*( )j J x , we have 

0k

j 
. So 

0j 
, 

*( )j J x 
. Therefore, (3.2) holds. 

 

Theorem 3.1 implies that the sequence produced by algorithm 
*x  can converge to the KKT point of ( )P  

under certain conditions. In fact, if the Mangasarian-Fromovitz constraint holds at 
*x  in Theorem 3.1, then 

*x  is 

the KKT point of problem ( )P .  

 

IV. CONCLUSION 
The convergence rate of algorithm A depends on the speed of the algorithm applied to the unconstrained 

optimization problem in Step 2. Since the function
( , , )k kF x  

is twice differentiable 

when
, 1, 2, ,, j j mf g  

is twice continuously differentiable, we can obtain a faster convergence rate.  
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